Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC-metal (loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]-PC 2 transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)-PC 2 transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs.ABC transporter | vacuolar sequestration | multidrug resistance-associated protein
Proline transporters (ProTs) mediate transport of the compatible solutes Pro, glycine betaine, and the stress-induced compound g-aminobutyric acid. A new member of this gene family, AtProT3, was isolated from Arabidopsis (Arabidopsis thaliana), and its properties were compared to AtProT1 and AtProT2. Transient expression of fusions of AtProT and the green fluorescent protein in tobacco (Nicotiana tabacum) protoplasts revealed that all three AtProTs were localized at the plasma membrane. Expression in a yeast (Saccharomyces cerevisiae) mutant demonstrated that the affinity of all three AtProTs was highest for glycine betaine (K m 5 0.1-0.3 mM), lower for Pro (K m 5 0.4-1 mM), and lowest for g-aminobutyric acid (K m 5 4-5 mM). Relative quantification of the mRNA level using real-time PCR and analyses of transgenic plants expressing the b-glucuronidase (uidA) gene under control of individual AtProT promoters showed that the expression pattern of AtProTs are complementary. AtProT1 expression was found in the phloem or phloem parenchyma cells throughout the whole plant, indicative of a role in long-distance transport of compatible solutes. b-Glucuronidase activity under the control of the AtProT2 promoter was restricted to the epidermis and the cortex cells in roots, whereas in leaves, staining could be demonstrated only after wounding. In contrast, AtProT3 expression was restricted to the above-ground parts of the plant and could be localized to the epidermal cells in leaves. These results showed that, although intracellular localization, substrate specificity, and affinity are very similar, the transporters fulfill different roles in planta.
SummaryFor the efficient translocation of organic nitrogen, small peptides of two to three amino acids are posited as an important alternative to amino acids. A new transporter mediating the uptake of di-and tripeptides was isolated from Arabidopsis thaliana by heterologous complementation of a peptide transport-deficient Saccharomyces cerevisiae mutant. AtPTR1 mediated growth of S. cerevisiae cells on different di-and tripeptides and caused sensitivity to the phytotoxin phaseolotoxin. The spectrum of substrates recognized by AtPTR1 was determined in Xenopus laevis oocytes injected with AtPTR1 cRNA under voltage clamp conditions. AtPTR1 not only recognized a broad spectrum of di-and tripeptides, but also substrates lacking a peptide bond. However, amino acids, x-amino fatty acids or peptides with more than three amino acid residues did not interact with AtPTR1. At pH 5.5 AtPTR1 had an apparent lower affinity (K 0.5 ¼ 416 lM) for AlaAsp compared with Ala-Ala (K 0.5 ¼ 54 lM) and Ala-Lys (K 0.5 ¼ 112 lM). Transient expression of AtPTR1/GFP fusion proteins in tobacco protoplasts showed that AtPTR1 is localized at the plasma membrane. In addition, transgenic plants expressing the b-glucuronidase (uidA) gene under control of the AtPTR1 promoter demonstrated expression in the vascular tissue throughout the plant, indicative of a role in long-distance transport of di-and tripeptides.
SummaryWe describe the first functional and molecular characterization of an amino acid permease (LdAAP3) from the human parasitic protozoan Leishmania donovani , the causative agent of visceral leishmaniasis in humans. This permease contains 480 amino acids with 11 predicted trans-membrane domains. Expressing LdAAP3 in Saccharomyces cerevisiae mutants revealed that LdAAP3 codes for a highaffinity arginine transporter ( K m 1.9 m M). LdAAP3 is highly specific for arginine as its transport was not inhibited by other amino acids or arginine-related compounds. Using green fluorescence protein (GFP) fused to the N-terminus of LdAAP3, this transporter was localized to the surface membrane of promastigotes. The GFP-LdAAP3 chimera mediated a threefold increase in arginine transport in promastigotes, indicating that it is active and confirmed that LdAAP3 codes for an arginine transporter in parasite cells as well. LdAAP3 is novel as it shares a high level of homology with amino acid permeases from other trypanosomatidae but almost none with permeases from other phyla. The results of this work suggest that LdAAP3 might play a role in host-parasite interaction.
Essential amino acids cannot be synthesized by humans and animals. They often are limiting in plant-derived foods and determine the nutritional value of a given diet. Seeds and fruits often represent the harvestable portion of plants. In order to improve the amino acid composition of these tissues, it is indispensable to understand how these substrates are transported within the plant. Amino acids result from nitrogen assimilation, which often occurs in leaves, the source tissue. They are transported via the vasculature, the xylem, and the phloem into the seeds, the so-called sink tissue, where they are stored or consumed. In seeds, several tissues are symplasmically isolated, i.e., not connected by plasmodesmata, channels in the cell walls that enable a cytoplasmic continuum in plants. Consequently, amino acids must be exported from cells into the apoplast and re-imported many times to support seed development. Several amino acid importers are known, but exporters remained elusive. Here, we characterize four members of the plant-specific UmamiT transporter family from Arabidopsis, related to the amino acid facilitator SIAR1 and the vacuolar auxin transporter WAT1. We show that the proteins transport amino acids along their (electro)chemical potential across the plasma membrane. In seeds, they are found in tissues from which amino acids are exported. Loss-of-function mutants accumulate high levels of free amino acids in fruits and produce smaller seeds. Our results strongly suggest a crucial role for the UmamiTs in amino acid export and possibly a means to improve yield quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.