BACKGROUND/AIMS-Studies in animal models and humans suggest a link between endotoxemia and non-alcoholic steatohepatitis. Since Kupffer cells are responsible for clearing endotoxin and are activated via endotoxin interaction with Toll-like receptor 4 (TLR-4), we examined the relationship between hepatic TLR-4 expression and Kupffer cell content during the genesis of steatohepatitis.METHODS-Male C57BL/6, C3H/HouJ and TLR-4 mutant C3H/HeJ mice were fed control or methionine/choline-deficient diet (MCDD). In one group of C57BL/6 mice, Kupffer cells were depleted by weekly intravenous injections of clodronate liposomes. After 3 weeks, serum ALT activity and portal endotoxin levels were measured. Real-time PCR was used to examine mRNA expression of TLR-4, TLR-2, CD14, MD-2, TGFβ, TNFα CD36 PPAR-α, liver fatty acid binding protein (L-FABP) and collagen α1.RESULTS-We observed histological evidence typical of steatohepatitis, portal endotoxemia and enhanced TLR-4 expression in wild type mice fed MCDD. In contrast, injury and lipid accumulation markers were significantly lower in TLR-4 mutant mice. Destruction of Kupffer cells with clodronate liposomes blunted histological evidence of steatohepatitis and prevented increases in TLR-4 expression.CONCLUSIONS-These findings demonstrate the importance of TLR-4 signaling and underscore a direct link between TLR-4 and Kupffer cells in the pathogenesis of steatohepatitis.
Several subsets of αβ regulatory T cells (Tregs) have been described and studied intensively, but the potential regulatory role of γδ T cells remains largely unclear. Lymphocytes expressing γδ TCR are involved in both innate and adaptive immune responses, and their major adult human peripheral blood subset (Vγ9Vδ2) displays a broad reactivity against microbial agents and tumors. In this study we report that γδ T lymphocytes with regulatory functions (Vδ2 Tregs) are induced in vitro in the presence of specific Ag stimulation and cytokines (TGF-β1 and IL-15). These cells express FOXP3 and, similarly as αβ Tregs, suppress the proliferation of anti-CD3/anti-CD28 stimulated-PBMC. Phenotypic and functional analyses of Vδ2 Tregs will very likely improve our understanding about the role of γδ T cells in the pathogenesis of autoimmune, infectious, and neoplastic diseases.
Skeletal muscle comprises a family of diverse tissues with highly specialized functions. Many acquired diseases, including HIV and COPD, affect specific muscles while sparing others. Even monogenic muscular dystrophies selectively affect certain muscle groups. These observations suggest that factors intrinsic to muscle tissues influence their resistance to disease. Nevertheless, most studies have not addressed transcriptional diversity among skeletal muscles. Here we use RNAseq to profile mRNA expression in skeletal, smooth, and cardiac muscle tissues from mice and rats. Our data set, MuscleDB, reveals extensive transcriptional diversity, with greater than 50% of transcripts differentially expressed among skeletal muscle tissues. We detect mRNA expression of hundreds of putative myokines that may underlie the endocrine functions of skeletal muscle. We identify candidate genes that may drive tissue specialization, including Smarca4, Vegfa, and Myostatin. By demonstrating the intrinsic diversity of skeletal muscles, these data provide a resource for studying the mechanisms of tissue specialization.
Prior to the advent of VEGF-targeted therapies, renal cell carcinoma (RCC) was among the few solid tumors shown to respond to cytokine-based therapies such as interleukin-2 (IL-2) and interferon alpha. Previous work has shown that aminobisphosphonates, including zoledronic acid (ZA), are capable of activating human Vγ9 Vδ2 T cells in vitro, and these cells can be further expanded with IL-2. Moreover, these Vγ9 Vδ2 T cells have cytolytic activity in vitro to multiple human tumor cell lines. In the current report, we have conducted a pilot trial in patients with metastatic RCC, evaluating different doses of ZA in combination with low-dose IL-2 to determine whether combining these agents can promote in vivo proliferation of Vγ9 Vδ2 T cells and elicit an antitumor response. In 12 patients evaluated, no objective clinical responses were observed by RECIST criteria; however, two patients experienced prolonged stable disease. A modest increase in Vγ9 Vδ2 T-cell frequency could be detected by Day 8 of therapy in four of the nine patients who received at least one cycle of therapy, but not to the magnitude anticipated from preclinical models. Repeated administration of IL-2 and ZA resulted in both a diminished in vivo percentage of Vγ9 Vδ2 T cells as well as impaired expansion in vitro after the first cycle of therapy. These results suggest that repeated administration of IL-2 and ZA, at the doses and schedules used in this trial, may actually inhibit the proliferative capacity of Vγ9 Vδ2 T cell in patients with metastatic RCC.
The complex antiviral immune mechanisms involve both adaptive and innate reactions mediated by gammadelta T lymphocytes, whose unique immunosurveillance contributions are analyzed here in different clinical and experimental settings. It is beyond any doubt that the fast, potent, cytotoxic as well as non-cytolytic antiviral activities of gammadelta T cells are critical in protecting the host against diverse viral pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.