Modelling extreme values distributions, such as wave height time series where the higher waves are much less frequent than the lower ones, has been tackled from the point of view of the Peak-Over-Threshold (POT) methodologies, where modelling is based on those values higher than a threshold. This threshold is usually predefined by the user, while the rest of values are ignored. In this paper, we propose a new method to estimate the distribution of the complete time series, including both extreme and regular values. This methodology assumes that extreme values time series can be modelled by a normal distribution in a combination of a uniform one. The resulting theoretical distribution is then used to fix the threshold for the POT methodology. The methodology is tested in nine real-world time series collected in the Gulf of Alaska, Puerto Rico and Gibraltar (Spain), which are provided by the National Data Buoy Center (USA) and Puertos del Estado (Spain). By using the Kolmogorov-Smirnov statistical test, the results confirm that the time series can be modelled with this type of mixed distribution. Based on this, the return values and the confidence intervals for wave height in different periods of time are also calculated.
The paper describes a methodology for constructing a possible combination of different basis functions (sigmoidal and product) for the hidden layer of a feed forward neural network, where the architecture, weights and node typology are learned based on evolutionary programming. This methodology is tested using simulated Gaussian data set classification problems with different linear correlations between input variables and different variances. It was found that combined basis functions are the more accurate for classification than pure sigmoidal or product-unit models. Combined basis functions present competitive results which are obtained using linear discriminant analysis, the best classification methodology for Gaussian data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.