Endothelial progenitor cells (EPCs) home from the bone marrow to the site of tissue regeneration and sustain neovascularization after acute vascular injury and upon the angiogenic switch in solid tumors. Therefore, they represent a suitable tool for cell-based therapy (CBT) in regenerative medicine and provide a novel promising target in the fight against cancer. Intracellular Ca2+ signals regulate numerous endothelial functions, such as proliferation and tubulogenesis. The growth of endothelial colony forming cells (ECFCs), which are EPCs capable of acquiring a mature endothelial phenotype, is governed by store-dependent Ca2+ entry (SOCE). This study aimed at investigating the nature and the role of VEGF-elicited Ca2+ signals in ECFCs. VEGF induced asynchronous Ca2+ oscillations, whose latency, amplitude, and frequency were correlated to the growth factor dose. Removal of external Ca2+ (0Ca2+) and SOCE inhibition with N-(4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP-2) reduced the duration of the oscillatory signal. Blockade of phospholipase C-γ with U73122, emptying the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pools with cyclopiazonic acid (CPA), and inhibition of InsP3 receptors with 2-APB prevented the Ca2+ response to VEGF. VEGF-induced ECFC proliferation and tubulogenesis were inhibited by the Ca2+-chelant, BAPTA, and BTP-2. NF-κB activation by VEGF was impaired by BAPTA, BTP-2, and its selective blocker, thymoquinone. Thymoquinone, in turn, suppressed VEGF-dependent ECFC proliferation and tubulogenesis. These data indicate that VEGF-induced Ca2+ oscillations require the interplay between InsP3-dependent Ca2+ release and SOCE, and promote ECFC growth and tubulogenesis by engaging NF-κB. This novel signaling pathway might be exploited to enhance the outcome of CBT and chemotherapy.
Ectopic thyroid tissue remains a rare developmental abnormality involving defective or aberrant embryogenesis of the thyroid gland during its passage from the floor of the primitive foregut to its usual final position in pre-tracheal region of the neck. Its specific prevalence accounts about 1 case per 100.000-300.000 persons and one in 4.000-8.000 patients with thyroid disease show this condition. The cause of this defect is not fully known. Despite genetic factors have been associated with thyroid gland morphogenesis and differentiation, just recently some mutation has been associated with human thyroid ectopy. Lingual region in the most common site of thyroid ectopy but ectopic thyroid tissue were found in other head and neck locations. Nevertheless, aberrant ectopic thyroid tissue has been found in other places distant from the neck region. Ectopic tissue is affected by different pathological changes that occur in the normal eutopic thyroid. Patients may present insidiously or as an emergency. Diagnostic management of thyroid ectopy is performed by radionuclide thyroid imaging, ultrasonography, CT scan, MRI, biopsy and thyroid function tests. Asymptomatic euthyroid patients with ectopic thyroid do not usually require therapy but are kept under observation. For those with symptoms, treatment depends on size of the gland, nature of symptoms, thyroid function status and histological findings. Surgical excision is often required as treatment for this condition.
G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we discuss the main mechanisms of GPCR-mediated cell-surface receptors transactivation and the pathways involved in intracellular responses induced by GPCR agonists. These studies may suggest the design of novel strategies for therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.