The development of adhesives with superior optical and mechanical performance, solvent resistance, and reworkability is gaining increasing attention in recent years. However, traditional materials do not possess reprocessability and healing characteristics for sustainable development. Here, a superior dynamic polythiourethane (PTU) adhesive with high reprocessability was developed by introducing covalent adaptable networks (CANs). Specifically, dynamic thiocarbamate bonds (TCB) were used to prepare PTU CANs, which showed dramatically enhanced malleability and recyclability. The Young’s modulus of the material was 2.0 GPa and the tensile strength was 62.7 MPa. The reprocessing temperature of CANs was reduced to 80 °C while more than 90% of their mechanical properties were retained, even after being reprocessed several times. Moreover, the highly transparent and water-resistant PTU CANs featured an excellent bonding property and reworkability for various materials including glass, with a lap shear strength of 2.9 MPa, metal (5.1 MPa), and wood (6.3 MPa), compared with commercially available adhesives. Additionally, carbon fiber-reinforced composites constructed with PTU CANs were capable of being fully recycled and reused. Importantly, laminated glass with a toughened PTU–PU elastomer interface exhibited an outstanding impact fatigue-resistance behavior, sustaining thousands of impacts. These features demonstrate that PTU CANs show great potential as sustainable materials.
Flexible dielectrics with high energy density (U e) and low energy loss (U l) under elevated electric fields are especially attractive for the next-generation energy storage devices, e.g., high-pulse film capacitors. However, raising U e by introducing high dielectric constant materials generally increases U l, which is detrimental to the devices. To overcome this trade-off, a new strategy consisting of elevating electron polarization through the incorporation of 4-hydroxy-2,2,6,6-tetramethylpiperidin-N-oxy (TEMPO) units and capturing electrons with stable organic radicals is proposed. A series of flexible poly (dicyclopentadiene norbornene-ended 4-hydroxy-2, 2, 6, 6-tetramethylpiperidin-N-oxy) (PNB-D x T y ) copolymers with excellent dielectric and physical properties, thermal stability, and processability, were prepared and their energy storage properties investigated. Specifically, dicyclopentadiene (DCPD) groups were designed to construct a cross-linked network, while the TEMPO groups offered a stable radical to capture electrons under the action of an electric field, which favored the enhancement of the dielectric constant, Young’s modulus, and breakdown strength of the polymers. Compared with commercially available state-of-the-art polymer dielectrics, e.g., biaxially oriented polypropylene (BOPP), PNB-D x -T y demonstrated an exceeding dielectric performance and low-cost potential. Importantly, a discharge energy density of 10.6 J/cm3 with a high efficiency of 92% at 500 MV/m was achieved. The effective strategy revealed that the isolated stable radical in the low-polarity polymer matrix suppressed the energy loss and created a new paradigm for high-energy and low-loss flexible capacitors.
Silk is one of the valuable fibers in textile industry. It is used for delicate applications in many areas such as sarees, suitings, curtains and luxurious interiors. To diversify the properties and usages silk is mixed with polyester and lyocell. The fabric is dyed with natural dyes (kum kum, indigo, barberry) as well as synthetic dyes (reactive dye (H), reactive dye (M) and sulphur dye). This mixed fabric is compared with 100% silk for some of the basic properties like absorbency, water retention, wicking, water vapour permeability, air permeability, K/S values, colour fastness and antimicrobial property. The silk mixed fabric gives the appreciable results with the 100% silk fabric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.