Materials GOx immobilization Km app / mM Ref. PVA-g-P(4-VP) films Physical entrapment 19 1 Nafion film Covalent attachment with GA, BSA and Nafion 14.91 2 Chitosan matrix Covalent attachment with GA in a 5% (v/v) glycerol solution 14.2 3 NiO modified glassy carbon electrodes Co-deposition with NiO nanoparticles at 0.8 V for 15 min in buffer solution 2.7 4 Gold nanoparticles Thiol-Cystamine modification of Au with IO4oxidized GOx 4.3
Conjugated polymers that support mixed (electronic and ionic) conduction are in demand for applications spanning from bioelectronics to energy harvesting and storage. To design polymer mixed conductors for high‐performance electrochemical devices, relationships between the chemical structure, charge transport, and morphology must be established. A polymer series bearing the same p‐type conjugated backbone with increasing percentage of hydrophilic, ethylene glycol side chains is synthesized, and their performance in aqueous electrolyte gated organic electrochemical transistors (OECTs) is studied. By using device physics principles and electrochemical analyses, a direct relationship is found between the OECT performance and the balanced mixed conduction. While hydrophilic side chains are required to facilitate ion transport—thus enabling OECT operation—swelling of the polymer is not de facto beneficial for balancing mixed conduction. It is shown that heterogeneous water uptake disrupts the electronic conductivity of the film, leading to OECTs with lower transconductance and slower response times. The combination of in situ electrochemical and structural techniques shown here contributes to the establishment of the structure–property relations necessary to improve the performance of polymer mixed conductors and subsequently of OECTs.
In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.
The fundamental understanding of the electrode/electrolyte interface is of pivotal importance for the efficient electrochemical conversion and storage of electrical energy. However, the reasons for the low rate of electrocatalytic oxygen evolution and issues of long-term material stability, which are central constraints for attaining desirable efficiency for sustainable technologies like water electrolysis or electrochemical CO 2 reduction, are still not completely resolved. While a lot of attention has been directed towards the search for new materials with unique (electro)catalytic properties, experimental results accumulated during the last four decades and prediction from models suggest that RuO 2 possesses superior activity for oxygen evolution under acidic conditions. Considering that RuO 2 is a material of choice, we show that tailoring the surface morphology on the meso-and macroscale has great potential for the improvement of the efficiency of this gas evolving reaction. Advanced analytical tools have been utilized for the combined investigation of both activity and stability. Namely, the potential dependent frequencies of gas-bubble evolution, an indicator for the activity of the electrode, were acquired by scanning electrochemical microscopy (SECM), while the dissolution of RuO 2 was monitored using a micro electrochemical scanning flow cell combined with an inductively coupled plasma mass spectrometer (SFC-ICP-MS). The obtained fundamental insights will aid improving the design and thus performance of electrode materials for water oxidation.
Conjugated polymers achieve redox activity in electrochemical devices by combining redox-active, electronically conducting backbones with ion-transporting side chains that can be tuned for different electrolytes. In aqueous electrolytes, redox activity can be accomplished by attaching hydrophilic side chains to the polymer backbone, which enables ionic transport and allows volumetric charging of polymer electrodes. While this approach has been beneficial for achieving fast electrochemical charging in aqueous solutions, little is known about the relationship between water uptake by the polymers during electrochemical charging and the stability and redox potentials of the electrodes, particularly for electron-transporting conjugated polymers. We find that excessive water uptake during the electrochemical charging of polymer electrodes harms the reversibility of electrochemical processes and results in irreversible swelling of the polymer. We show that small changes of the side chain composition can significantly increase the reversibility of the redox behavior of the materials in aqueous electrolytes, improving the capacity of the polymer by more than one order of magnitude. Finally, we show that tuning the local environment of the redox-active polymer by attaching hydrophilic side chains can help to reach high fractions of the theoretical capacity for single-phase electrodes in aqueous electrolytes. Our work shows the importance of chemical design strategies for achieving high electrochemical stability for conjugated polymers in aqueous electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.