Background: Resistance exercise increases muscle mass and function in older adults, but responses are attenuated compared with younger people. Data suggest that long-chain n–3 polyunsaturated fatty acids (PUFAs) may enhance adaptations to resistance exercise in older women. To our knowledge, this possibility has not been investigated in men.Objective: We sought to determine the effects of long-chain n–3 PUFA supplementation on resistance exercise training–induced increases in muscle mass and function and whether these effects differ between older men and women.Design: Fifty men and women [men: n = 27, mean ± SD age: 70.6 ± 4.5 y, mean ± SD body mass index (BMI; in kg/m2): 25.6 ± 4.2; women: n = 23, mean ± SD age: 70.7 ± 3.3 y, mean ± SD BMI: 25.3 ± 4.7] were randomly assigned to either long-chain n–3 PUFA (n = 23; 3 g fish oil/d) or placebo (n = 27; 3 g safflower oil/d) and participated in lower-limb resistance exercise training twice weekly for 18 wk. Muscle size, strength, and quality (strength per unit muscle area), functional abilities, and circulating metabolic and inflammatory markers were measured before and after the intervention.Results: Maximal isometric torque increased after exercise training to a greater (P < 0.05) extent in the long-chain n–3 PUFA group than in the placebo group in women, with no differences (P > 0.05) between groups in men. In both sexes, the effect of exercise training on maximal isokinetic torque at 30, 90, and 240° s−1, 4-m walk time, chair-rise time, muscle anatomic cross-sectional area, and muscle fat did not differ (P > 0.05) between groups. There was a greater (P < 0.05) increase in muscle quality in women after exercise training in the long-chain n–3 PUFA group than in the placebo group, with no such differences in men (P > 0.05). Long-chain n–3 PUFAs resulted in a greater decrease (P < 0.05) than the placebo in plasma triglyceride concentrations in both sexes, with no differences (P > 0.05) in glucose, insulin, or inflammatory markers.Conclusion: Long-chain n–3 PUFA supplementation augments increases in muscle function and quality in older women but not in older men after resistance exercise training. This trial was registered at clinicaltrials.gov as NCT02843009.
This study aimed to evaluate, in swimming, the agreement between the anaerobic threshold (AT) as determined from the analysis of blood lactate concentration ([La]) and from a new method based on the heart rate (HR) variability (HRV). Fourteen high-level swimmers completed an incremental 7 × 200-m front crawl test, during which the HRV was measured continuously and [La] was collected after each step. To individuate the AT, the trends of the high-frequency HRV spectral power (HFPOW) and of the fraction of HFPOW relative to the respiratory sinus arrhythmia (HFPOW-RSA) were analyzed. In all the subjects, an abrupt increase of both HFPOW and HFPOW-RSA was observed and associated with the AT. The AT parameters determined, respectively, from [La] and HFPOW-RSA were similar (p > 0.05) and highly correlated (HR: 182.0 ± 8.1 vs. 181.1 ± 8.2 b·min, r = 0.93, 95% limits of agreement [LoA]: -6.7 to 4.9 b·min; velocity: 1.47 ± 0.11 vs. 1.47 ± 0.11 m·s, r = 0.98, 95% LoA: -0.05 to 0.05 m·s). Instead, the AT HR and velocity obtained from HFPOW (179.2 ± 8.4 b·min; 1.45 ± 0.11 m·s) were correlated to the corresponding parameters determined from [La] (HR: r = 0.84; velocity: r = 0.94) but underestimated them slightly (95% LoA: -11.9 to 6.3 b·min and -0.11 to 0.05 m·s). These results demonstrate that the AT can be assessed from the HRV in swimming, providing an important testing tool for coaches. Furthermore, using the actual respiratory spectral component, rather than the total HF spectral power, allows us to obtain a more accurate estimate of AT parameters.
Resistance exercise training is known to be effective in increasing muscle mass in older people. Acute measurement of protein metabolism data has indicated that the magnitude of response may differ between sexes. We compared adaptive responses in muscle mass and function to 18 weeks resistance exercise training in a cohort of older (>65 years) men and women. Resistance exercise training improved knee extensor maximal torque, 4 m walk time, time to complete five chair rises, muscle anatomical cross‐sectional area (ACSA) and muscle quality with no effect on muscle fat/water ratio or plasma glucose, insulin, triacylglycerol, IL‐6, and TNF‐α. Differences between sexes were observed for knee extensor maximal torque and muscle quality with greater increases observed in men versus women (P < 0.05). Maximal torque increased by 15.8 ± 10.6% in women and 41.7 ± 25.5% in men, whereas muscle quality increased by 8.8 ± 17.5% in women and by 33.7 ± 25.6% in men. In conclusion, this study has demonstrated a difference in the magnitude of adaptation, of some of the outcome measures employed, in response to 18 weeks of resistance exercise training between men and women. The mechanisms underlying this observation remain to be established.
N-3 PUFA (n-3) polyunsaturated fatty acids (PUFA) are a family of fatty acids mainly found in oily fish and fish oil supplements. The effects of n-3 PUFA on health are mainly derived from its anti-inflammatory proprieties and its influence on immune function. Lately an increased interest in n-3 PUFA supplementation has reached the world of sport nutrition, where the majority of athletes rely on nutrition strategies to improve their training and performance. A vast amount of attention is paid in increasing metabolic capacity, delaying the onset of fatigue, and improving muscle hypertrophy and neuromuscular function. Nutritional strategies are also frequently considered for enhancing recovery, improving immune function and decreasing oxidative stress. The current review of the literature shows that data regarding the effects of n-3PUFA supplementation are conflicting and we conclude that there is, therefore, not enough evidence supporting a beneficial role on the aforementioned aspects of exercise performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.