Microalgae and probiotics such as Bifidobacterium and Lactobacillus genera are associated with human beneficial effects. The aim of this study was to evaluate the activity of Chlorella sorokiniana on Bifidobacterium longum and Lactobacillus plantarum viability in a dairy product (flan) and its microbial effect against rotavirus, which is one of the major diarrhea-causing pathogens worldwide. Microalge were isolated from a Mexican river and characterized by molecular tools. Their prebiotic activity was evaluated by determining Bifidobacterium longum and Lactobacillus plantarum shelf-life after incorporation in the food matrix. In addition, HT-29 cells were infected with rotavirus Wa and treated with 1 × 10 9 CFU/mL L. plantarum and B. longum metabolites alone or in combination with 1 × 10 9 cells/mL Chlorella sorokiniana; viral titers in probioticsand/or microalgae-treated cells were evaluated for antiviral activity. Results indicated that C. sorokiniana not only significantly (p < 0.05) improved L. plantarum and B. longum viability in flan, but also increased their antiviral activity; potent anti-rotavirus effect of C. sorokiniana alone was observed. Although more studies are needed, results suggest that incorporation of this microalga into a dairy product confers enhanced viability and antiviral effects, which indicates that C. sorokiniana might be used as an ingredient to design products with additional health benefits.
Aedes aegypti (Linn.) incidence has increased in recent years, causing human viral diseases such as dengue, which are often fatal. Beauveria bassiana (Bals., Vuillemin) efficacy for Ae. aegypti biological control has been evidenced but it relies on host susceptibility and strain virulence. We hypothesized that B. bassiana conidia microgranular formulations (MGF) with the additives acetone, lactic acid, and sugar increase Ae. aegypti adult exposure, thus improving their biocontrol effectiveness. Beauveria bassiana strain four (BBPTG4) conidia stability was assessed after 0 d, 5 d, and 30 d storage at 25 °C ± 2 °C with additives or in MGF after 91 d of storage at 25 °C ± 2 °C or 4 °C ± 1 °C, whereas mortality was evaluated after adult exposure to MGF + conidia, using home-made traps. Additives did not show toxicity to conidia. In addition, we observed that sugar in MGF increased Ae. aegypti adults’ attraction and their viability resulted in a 3-fold reduction after 5 d and 1- to 4-fold decrease after 30 d of storage, and formulations were less attractive (p < 0.05). Conidia stability was higher on MGF regardless of the storage temperature, losing up to 2.5-fold viability after 91 d. In conclusion, BBPTG4 infected and killed Ae. aegypti, whereas MGF attracting adults resulted in 42.2% mortality, increasing fungus auto dissemination potential among infected surviving adults. It is necessary to further evaluate MGF against Ae. aegypti in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.