The drilling operations use a rotary slender structure introduced inside the drill well. The nonlinear dynamics with bit-bouncing, stick-slip phenomena, and pulsating mud flow may yield the premature wear and damage of drilling equipment and should be investigated to improve the reliability of drilling operations. This work presents the beam element formulation to model the drilling nonlinear dynamics. The well-pipe contacts are modeled by the radial elastic stops. The fluid–structure interactions are considered. The first step consists in computing the static position of structure to determine the contact points and calculate the preloaded state. These results are then considered to calculate the Campbell diagram. The potentially unstable speeds of rotation are identified. The results show that the modal coupling phenomena strongly occur for the three-dimensional well. The well-pipe contacts modify the modes in rotation, and the rotating fluid induces a strong deviation of the flexural mode curves.
A new reduction method is proposed to investigate the behavior stability of rotor-bearing systems subject to a multifrequency rotational motion of their base. Combining the modal analysis and the construction of specific dynamic Ritz vectors, this method is able to deal with complex rotordynamics characteristics such as nonproportional damping, nonself-adjoint matrices, or time-varying parametric coefficients. This paper focuses first on assessing the accuracy and efficiency of the reduction method by computing time history and spectral responses of full and reduced models due to multifrequency base excitations. Its main potential is then highlighted in the parametric stability analysis through Floquet theory. The proposed numerical examples are composed with academic and industrial rotors, both modeled with one-dimensional Timoshenko beam finite element and supported by hydrodynamic journal bearings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.