CB1 receptors are functionally present within brain mitochondria (mtCB1), although they are usually considered specifically targeted to plasma membrane. Acute activation of mtCB1 alters mitochondrial ATP generation, synaptic transmission, and memory performance. However, the detailed mechanism linking disrupted mitochondrial metabolism and synaptic transmission is still uncharacterized. CB1 receptors are among the most abundant G protein-coupled receptors in the brain and impact on several processes, including fear coping, anxiety, stress, learning, and memory. Mitochondria perform several key physiological processes for neuronal homeostasis, including production of ATP and reactive oxygen species, calcium buffering, metabolism of neurotransmitters, and apoptosis. It is therefore possible that acute activation of mtCB1 impacts on these different mitochondrial functions to modulate synaptic transmission. In reviewing and integrating across the literature in this area, we describe the possible mechanisms involved in the regulation of brain physiology by mtCB1 receptors.
High levels and activity of Src kinase are common among breast cancer subtypes, and several inhibitors of the kinase are currently tested in clinical trials. Alterations in mitochondrial activity is also observed among the different types of breast cancer. Src kinase is localized in several subcellular compartments, including mitochondria where it targets several proteins to modulate the activity of the organelle. Although the subcellular localization of other oncogenes modulates the potency of known treatments, nothing is known about the specific role of intra-mitochondrial Src (mtSrc) in breast cancer. The aim of this work was to determine whether mtSrc kinase has specific impact on breast cancer cells. We first observed that activity of mtSrc is higher in breast cancer cells of the triple negative subtype. Over-expression of Src specifically targeted to mitochondria reduced mtDNA levels, mitochondrial membrane potential and cellular respiration. These alterations of mitochondrial functions led to lower cellular viability, shorter cell cycle and increased invasive capacity. Proteomic analyses revealed that mtSrc targets the mitochondrial single-stranded DNA-binding protein, a regulator of mtDNA replication. Our findings suggest that mtSrc promotes aggressiveness of breast cancer cells via phosphorylation of mitochondrial single-stranded DNA-binding protein leading to reduced mtDNA levels and mitochondrial activity. This study highlights the importance of considering the subcellular localization of Src kinase in the development of potent therapy for breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.