T cell activation levels, viral load and CD4+ T cell counts at early stages of HIV-1 infection are predictive of the rate of progression towards AIDS. We evaluated whether the inflammatory profile during primary HIV-1 infection is predictive of the virological and immunological set-points and of disease progression. We quantified 28 plasma proteins during acute and post-acute HIV-1 infection in individuals with known disease progression profiles. Forty-six untreated patients, enrolled during primary HIV-1 infection, were categorized into rapid progressors, progressors and slow progressors according to their spontaneous progression profile over 42 months of follow-up. Already during primary infection, rapid progressors showed a higher number of increased plasma proteins than progressors or slow progressors. The plasma levels of TGF-β1 and IL-18 in primary HIV-1 infection were both positively associated with T cell activation level at set-point (6 months after acute infection) and together able to predict 74% of the T cell activation variation at set-point. Plasma IP-10 was positively and negatively associated with, respectively, T cell activation and CD4+ T cell counts at set-point and capable to predict 30% of the CD4+ T cell count variation at set-point. Moreover, plasma IP-10 levels during primary infection were predictive of rapid progression. In primary infection, IP-10 was an even better predictor of rapid disease progression than viremia or CD4+ T cell levels at this time point. The superior predictive capacity of IP-10 was confirmed in an independent group of 88 HIV-1 infected individuals. Altogether, this study shows that the inflammatory profile in primary HIV-1 infection is associated with T cell activation levels and CD4+ T cell counts at set-point. Plasma IP-10 levels were of strong predictive value for rapid disease progression. The data suggest IP-10 being an earlier marker of disease progression than CD4+ T cell counts or viremia levels.
A serologic survey of primates living in a French zoo allowed identification of three cases of infection with simian immunodeficiency virus in sooty mangabeys (Cercocebus atys) (SIVsm). Viral isolates, which were designated SIVsmFr66, SIVsmFr74, and SIVsmFr85, were obtained after short-term culture of mangabey lymphoid cells. Phylogenetic analysis of gag and envsequences amplified directly from mangabey tissues showed that the three SIVsmFr were genetically close and that they constituted a new subtype within the diverse SIVsm–SIVmac–human immunodeficiency virus type 2 (HIV-2) group. We could reconstruct the transmission events that likely occurred in 1986 between the three animals and evaluate the divergence of SIVsmFr sequences since transmission. The estimated rate of mutation fixation was 6 × 10−3 substitutions per site per year, which was as high as the rate found for SIVmac infection in macaques. These data indicated that SIVsmFr replicated at a high rate in mangabeys, despite the nonpathogenic character of infection in this host. The viral load evaluated by competitive PCR reached 20,000 viral DNA copies per 106 lymph node cells. In addition, productively infected cells were readily detected in mangabey lymphoid tissues by in situ hybridization. The amounts of viral RNA in plasma ranged from 105 to 107 copies per ml. The cell-associated and plasma viral loads were as high as those seen in susceptible hosts (humans or macaques) during the asymptomatic stage of HIV or SIVmac infections. Thus, the lack of pathogenicity of SIVsm for its natural host cannot be explained by limited viral replication or by tight containment of viral production.
The RP dipeptide motif is highly conserved in the third hypervariable region (V3 loop) of the extracellular envelope glycoprotein of different types of HIV isolates. In view of this, we have designed and synthesized a construction referred to as "template assembled synthetic peptide" (TASP), in which a lysine-rich short polypeptide was used as a template to covalently anchor arrays of tripeptides, such as RPR, RPK, or KPR. The pentavalent presentation, 5(RPR)-, 5(RPK)-, or 5(KPR)-TASP, molecules manifested maximum inhibitory activity on HIV infection with a 50% inhibitory concentration value of 1-5 microM, respectively. Structure and inhibitory-activity relationship studies using analogs of 5(KPR)-TASP indicated that the positively charged side chains of the K and R residues in the tripeptide molecules are critical for the optimal inhibitory activity of the pentavalent construct. Interestingly, replacement of L-amino acid residues by D-amino acids or reduction of the peptide bond between the first two amino acids of the tripeptide generated peptide-TASP analogs active at sub-microM, concentrations. The anti-HIV action of the peptide-TASP constructs is specific, since they inhibit infection of several types of CD4-expressing cells by HIV-1 Lai and HIV-2 EHO but not by the simian SIV-mac isolate. Our results suggest that these inhibitors block three post-CD4 binding functions of the HIV envelope glycoproteins, mediation of viral entry, syncytium formation, and triggering cell death by apoptosis. As the peptide-TASP derivatives with unnatural amino acid sequences in the tripeptide moiety retain full inhibitory activity, they should provide potent protease-resistant peptide inhibitors as potential therapeutic agents for treatment of AIDS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.