Quinoa (Chenopodium quinoa Willd.) is adapted to the harsh environments of the Andean Altiplano region. Its seeds have a well-balanced amino acid composition and exceptionally high protein content with respect to human nutrition. Quinoa grain is a staple in the diet of some of the most impoverished people in the world. The plant is an allotetraploid displaying disomic inheritance (2n=4x=36) with a di-haploid genome of 967 Mbp (megabase pair), or 2C=2.01 pg. We constructed two quinoa BAC libraries using BamHI (26,880 clones) and EcoRI (48,000 clones) restriction endonucleases. Cloned inserts in the BamHI library average 113 kb (kilobase) with approximately 2% of the clones lacking inserts, whereas cloned inserts in the EcoRI library average 130 kb and approximately 1% lack inserts. Three plastid genes used as probes of high-density arrayed blots of 73,728 BACs identified approximately 2.8% of the clones as containing plastid DNA inserts. We estimate that the combined quinoa libraries represent at least 9.0 di-haploid nuclear genome equivalents. An average of 12.2 positive clones per probe were identified with 13 quinoa single-copy ESTs as probes of the high-density arrayed blots, suggesting that the estimate of 9.0x coverage of the genome is conservative. Utility of the BAC libraries for gene identification was demonstrated by probing the library with a partial sequence of the 11S globulin seed storage protein gene and identifying multiple positive clones. The presence of the 11S globulin gene in four of the clones was verified by direct comparison with quinoa genomic DNA on a Southern blot. Besides serving as a useful tool for gene identification, the quinoa BAC libraries will be an important resource for physical mapping of the quinoa genome.
Quinoa (Chenopodium quinoa Willd.) is a food crop cultivated by subsistence farmers and commercial growers on the high Andean plateau, primarily in Bolivia, Peru, and Chile. Present interest in quinoa is due to its tolerance of harsh environments and its nutritional value. It is thought that the seed storage proteins of quinoa, particularly the 11S globulins and 2S albumins, are responsible for the relatively high protein content and ideal amino acid balance of the quinoa seed. Here we report the genomic and cDNA sequences for two 11S genes representing two orthologous loci from the quinoa genome. Important features of the genes and the proteins they encode are described on the basis of a comparison with homologous 11S sequences from other plant species. Gene expression and protein accumulation determined via reverse transcriptase real-time PCR and SDS-PAGE analyses are described. Additionally, we report the phylogenetic relationships between quinoa and 49 other species by using the coding DNA sequence for the well-conserved 11S basic subunit.
Clinical guidelines consider expanded carrier screening (ECS) to be an acceptable method of carrier screening. However, broader guideline support and payer adoption require evidence for associations between the genes on ECS panels and the conditions for which they aim to identify carriers. We applied a standardized framework for evaluation of gene‐disease association to assess the clinical validity of conditions screened by ECS panels. The Clinical Genome Resource (ClinGen) gene curation framework was used to assess genetic and experimental evidence of associations between 208 genes and conditions screened on two commercial ECS panels. Twenty‐one conditions were previously classified by ClinGen, and the remaining 187 were evaluated by curation teams at two laboratories. To ensure consistent application of the framework across the laboratories, concordance was evaluated on a subset of conditions. All 208 evaluated conditions met the evidence threshold for supporting a gene‐disease association. Furthermore, 203 of 208 (98%) achieved the strongest (“Definitive”) level of gene‐disease association. All conditions evaluated by both commercial laboratories were similarly classified. Assessment using the ClinGen standardized framework revealed strong evidence of gene‐disease association for conditions on two ECS panels. This result establishes the disease‐level clinical validity of the panels considered herein.
PURPOSE: Several groups and resources provide information that pertains to the validity of gene-disease relationships used in genomic medicine and research; however, universal standards and terminologies to define the evidence base for the role of a gene in disease, and a single harmonized resource were lacking. To tackle this issue, the Gene Curation Coalition (GenCC) was formed. METHODS: The GenCC drafted harmonized definitions for differing levels of gene-disease validity based on existing resources, and performed a modified Delphi survey with three rounds to narrow the list of terms. The GenCC also developed a unified database to display curated gene-disease validity assertions from its members. RESULTS: Based on 241 survey responses from the genetics community, a consensus term set was chosen for grading gene-disease validity and database submissions. As of December 2021, the database contains 15,241 gene-disease assertions on 4,569 unique genes from 12 submitters. When comparing submissions to the database from distinct sources, conflicts in assertions of gene-disease validity ranged from 5.3% to 13.4%. CONCLUSION: Terminology standardization, sharing of gene-disease validity classifications, and resolution of curation conflicts will facilitate collaborations across international curation efforts and in turn, improve consistency in genetic testing and variant interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.