Near-ground air (26 substances) and surface seawater (55 substances) concentrations of persistent toxic substances (PTS) were determined in July 2012 in a coordinated and coherent way around the Aegean Sea based on passive air (10 sites in 5 areas) and water (4 sites in 2 areas) sampling. The direction of air-sea exchange was determined for 18 PTS. Identical samplers were deployed at all sites and were analysed at one laboratory. hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs) as well as dichlorodiphenyltrichloroethane (DDT) and its degradation products are evenly distributed in the air of the whole region. Air concentrations of p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE) and o,p′-DDT and seawater concentrations of p,p′-DDE and p,p′-DDD were elevated in Thermaikos Gulf, northwestern Aegean Sea. The polychlorinated biphenyl (PCB) congener pattern in air is identical throughout the region, while polybrominated diphenylether (PBDE)patterns are obviously dissimilar between Greece and Turkey. Various pollutants, polycyclic aromatic hydrocarbons (PAHs), PCBs, DDE, and penta-and hexachlorobenzene are found close to phase equilibrium or net-volatilisational (upward flux), similarly at a remote site (on Crete) and in the more polluted Thermaikos Gulf. The results suggest that effective passive air sampling volumes may not be representative across sites when PAHs significantly partitioning to the particulate phase are included.
Abstract. Nitro-polycyclic aromatic hydrocarbons (NPAH) are ubiquitous in polluted air but little is known about their abundance in background air. NPAHs were studied at one marine and one continental background site, i.e. a coastal site in the southern Aegean Sea (summer 2012) and a site in the central Great Hungarian Plain (summer 2013), together with the parent compounds, PAHs. A Lagrangian particle dispersion model was used to track air mass history. Based on Lagrangian particle statistics, the urban influence on samples was quantified for the first time as a fractional dose to which the collected volume of air had been exposed. At the remote marine site, the 3–4-ring NPAH (sum of 11 targeted species) concentration was 23.7 pg m−3 while the concentration of 4-ring PAHs (6 species) was 426 pg m−3. The most abundant NPAHs were 2-nitrofluoranthene (2NFLT) and 3-nitrophenanthrene. Urban fractional doses in the range of < 0.002–5.4 % were calculated. At the continental site, the Σ11 3–4-ring NPAH and Σ6 4-ring PAH were 58 and 663 pg m−3, respectively, with 9-nitroanthracene and 2NFLT being the most concentrated amongst the targeted NPAHs. The NPAH levels observed in the marine background air are the lowest ever reported and remarkably lower, by more than 1 order of magnitude, than 1 decade before. Day–night variation of NPAHs at the continental site reflected shorter lifetime during the day, possibly because of photolysis of some NPAHs. The yields of formation of 2NFLT and 2-nitropyrene (2NPYR) in marine air seem to be close to the yields for OH-initiated photochemistry observed in laboratory experiments under high NOx conditions. Good agreement is found for the prediction of NPAH gas–particle partitioning using a multi-phase poly-parameter linear free-energy relationship. Sorption to soot is found to be less significant for gas–particle partitioning of NPAHs than for PAHs. The NPAH levels determined in the south-eastern outflow of Europe confirm intercontinental transport potential.
Concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) in air and soil, their fugacities, and the experimental soil-air partitioning coefficient (KSA) were determined at two background sites in the Gt. Hungarian Plain in August 2013. The concentrations of the semivolatile organic compounds (SOCs) in the soil were not correlated with the organic carbon content but with two indirect parameters of mineralization and aromaticity, suggesting that soil organic matter quality is an important parameter affecting the sorption of SOCs onto soils. Predictions based on the assumption that absorption is the dominant process were in good agreement with the measurements for PAHs, OCPs, and the low chlorinated PCBs. In general, soils were found to be a source of PAHs, high chlorinated PCBs, the majority of OCPs and PBDEs, and a sink for the low chlorinated PCBs and γ-hexachlorocyclohexane. Diurnal variations in the direction of the soil-air exchange were found for two compounds (i.e., pentachlorobenzene and p,p'-dichlorodiphenyldichloroethane), with volatilization during the day and deposition in the night. The concentrations of most SOCs in the near-ground atmosphere were dominated by revolatilization from the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.