BACKGROUND Deep dermatophytosis is a severe and sometimes life-threatening fungal infection caused by dermatophytes. It is characterized by extensive dermal and subcutaneous tissue invasion and by frequent dissemination to the lymph nodes and, occasionally, the central nervous system. The condition is different from common superficial dermatophyte infection and has been reported in patients with no known immunodeficiency. Patients are mostly from North African, consanguineous, multiplex families, which strongly suggests a mendelian genetic cause. METHODS We studied the clinical features of deep dermatophytosis in 17 patients with no known immunodeficiency from eight unrelated Tunisian, Algerian, and Moroccan families. Because CARD9 (caspase recruitment domain–containing protein 9) deficiency has been reported in an Iranian family with invasive fungal infections, we also sequenced CARD9 in the patients. RESULTS Four patients died, at 28, 29, 37, and 39 years of age, with clinically active deep dermatophytosis. No other severe infections, fungal or otherwise, were reported in the surviving patients, who ranged in age from 37 to 75 years. The 15 Algerian and Tunisian patients, from seven unrelated families, had a homozygous Q289X CARD9 allele, due to a founder effect. The 2 Moroccan siblings were homozygous for the R101C CARD9 allele. Both alleles are rare deleterious variants. The familial segregation of these alleles was consistent with autosomal recessive inheritance and complete clinical penetrance. CONCLUSIONS All the patients with deep dermatophytosis had autosomal recessive CARD9 deficiency. Deep dermatophytosis appears to be an important clinical manifestation of CARD9 deficiency. (Funded by Agence Nationale pour la Recherche and others.)
TAC1 (for transcriptional activator of CDR genes) is critical for the upregulation of the ABC transporters CDR1 and CDR2, which mediate azole resistance in Candida albicans. While a wild-type TAC1 allele drives high expression of CDR1/2 in response to inducers, we showed previously that TAC1 can be hyperactive by a gain-of-function (GOF) point mutation responsible for constitutive high expression of CDR1/2. High azole resistance levels are achieved when C. albicans carries hyperactive alleles only as a consequence of loss of heterozygosity (LOH) at the TAC1 locus on chromosome 5 (Chr 5), which is linked to the mating-type-like (MTL) locus. Both are located on the Chr 5 left arm along with ERG11 (target of azoles). In this work, five groups of related isolates containing azole-susceptible and -resistant strains were analyzed for the TAC1 and ERG11 alleles and for Chr 5 alterations. While recovered ERG11 alleles contained known mutations, 17 new TAC1 alleles were isolated, including 7 hyperactive alleles with five separate new GOF mutations. Singlenucleotide-polymorphism analysis of Chr 5 revealed that azole-resistant strains acquired TAC1 hyperactive alleles and, in most cases, ERG11 mutant alleles by LOH events not systematically including the MTL locus. TAC1 LOH resulted from mitotic recombination of the left arm of Chr 5, gene conversion within the TAC1 locus, or the loss and reduplication of the entire Chr 5. In one case, two independent TAC1 hyperactive alleles were acquired. Comparative genome hybridization and karyotype analysis revealed the presence of isochromosome 5L [i(5L)] in two azole-resistant strains. i(5L) leads to increased copy numbers of azole resistance genes present on the left arm of Chr 5, among them TAC1 and ERG11. Our work shows that azole resistance was due not only to the presence of specific mutations in azole resistance genes (at least ERG11 and TAC1) but also to their increase in copy number by LOH and to the addition of extra Chr 5 copies. With the combination of these different modifications, sophisticated genotypes were obtained. The development of azole resistance in C. albicans is therefore a powerful instrument for generating genetic diversity.Azoles belong to a class of antifungals that are widely used for the treatment of fungal diseases and especially those caused by Candida albicans. Since azoles are fungistatic drugs for C. albicans, cells repetitively exposed to these antifungals adapt to the drug pressure and eventually become azole resistant. In C. albicans, the occurrence of azole resistance has been observed in different patient groups, mostly in human immunodeficiency virus (HIV)-positive patients with oropharyngeal candidiasis (45). Azole resistance mechanisms have been investigated at the molecular level by several authors (1, 42, 55) and fall into different categories. First, alterations such as point mutations or upregulation of the gene encoding the target of azoles, an enzyme (Erg11p) involved in ergosterol biosynthesis, can occur. Among the several nucleotide ...
Molecular characterization of Candida albicans isolates is essential for understanding the epidemiology of nosocomial infections caused by this yeast. Here, we investigated the potential value of multilocus sequence typing (MLST) for characterizing epidemiologically related or unrelated C. albicans strains of various clinical origins. Accordingly, we sequenced the internal regions (loci) of six selected housekeeping genes of 40 C. albicans clinical isolates and 2 reference strains. In all, 68 polymorphic nucleotide sites were identified, of which 65 were found to be heterozygous in at least one isolate. Ten to 24 different genotypes were observed at the different loci, resulting, when combined, in 39 unique genotype combinations or diploid sequence types (DSTs). When MLST was applied to 26 epidemiologically unrelated isolates and the 2 reference strains, it allowed the identification of 27 independent DSTs, thus demonstrating a discriminatory power of 99.7. Using multidimensional scaling together with the minimum spanning tree method to analyze interstrain relationships, we identified six groups of genetically related isolates on the basis of bootstrap values of greater than 900. Application of MLST to 14 epidemiologically related isolates showed that those recovered from patients in the same hospital ward during the same 3 months had specific DSTs, although 73% of these isolates were genetically very close. This suggests that MLST can trace minute variations in the sequences of related isolates. Overall, MLST proved to be a highly discriminatory and stable method for unambiguous characterization of C. albicans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.