The efficacy of convalescent plasma for coronavirus disease 2019 (COVID-19) is unclear. Although most randomized controlled trials have shown negative results, uncontrolled studies have suggested that the antibody content could influence patient outcomes. We conducted an open-label, randomized controlled trial of convalescent plasma for adults with COVID-19 receiving oxygen within 12 d of respiratory symptom onset (NCT04348656). Patients were allocated 2:1 to 500 ml of convalescent plasma or standard of care. The composite primary outcome was intubation or death by 30 d. Exploratory analyses of the effect of convalescent plasma antibodies on the primary outcome was assessed by logistic regression. The trial was terminated at 78% of planned enrollment after meeting stopping criteria for futility. In total, 940 patients were randomized, and 921 patients were included in the intention-to-treat analysis. Intubation or death occurred in 199/614 (32.4%) patients in the convalescent plasma arm and 86/307 (28.0%) patients in the standard of care arm—relative risk (RR) = 1.16 (95% confidence interval (CI) 0.94–1.43, P = 0.18). Patients in the convalescent plasma arm had more serious adverse events (33.4% versus 26.4%; RR = 1.27, 95% CI 1.02–1.57, P = 0.034). The antibody content significantly modulated the therapeutic effect of convalescent plasma. In multivariate analysis, each standardized log increase in neutralization or antibody-dependent cellular cytotoxicity independently reduced the potential harmful effect of plasma (odds ratio (OR) = 0.74, 95% CI 0.57–0.95 and OR = 0.66, 95% CI 0.50–0.87, respectively), whereas IgG against the full transmembrane spike protein increased it (OR = 1.53, 95% CI 1.14–2.05). Convalescent plasma did not reduce the risk of intubation or death at 30 d in hospitalized patients with COVID-19. Transfusion of convalescent plasma with unfavorable antibody profiles could be associated with worse clinical outcomes compared to standard care.
BackgroundIn clinical trials, the two anti-IL-5 monoclonal antibodies (mAbs, mepolizumab and reslizumab) that are approved to treat severe eosinophilic asthma, reduce exacerbations by approximately 50–60%.ObjectiveTo observe response to anti-IL-5 mAbs in real-life clinical setting, and to evaluate predictors of sub-optimal response.MethodsIn four Canadian academic centres, pre-defined clinical end-points in 250 carefully characterised moderate-to-severe asthmatics were collected prospectively to assess response to the two anti-IL-5 mAbs. Sub-optimal responses was determined based on failure to reduce maintenance corticosteroid (MCS) or asthma symptoms scores (ACQ) or exacerbations, in addition to persistence of sputum/blood eosinophils. Worsening in suboptimal responders were assessed based on reduced lung function by 25% or any increase in MCS/ACQ. A representative sub-set of 39 patients were evaluated for inflammatory mediators, autoantibodies and complement activation in sputum (by ELISA) and for immune-complex deposition by immunostaining formalin-fixed paraffin-embedded sputum plugs.ResultsSub-optimal responses were observed in 42.8% (107/250) patients treated with either mepolizumab/reslizumab. Daily prednisone requirement, sinus disease, and late-onset asthma diagnoses were the strongest predictors of sub-optimal response. Asthma worsened in 13% (34/250) of these patients. Majority (79%) of them were prednisone-dependent. Presence of sputum anti-eosinophil peroxidase immunoglobulin (Ig)G was a predictor of sub-optimal response to an anti-IL-5 mAb. An increase in sputum C3c (marker of complement activation) and deposition of C1q-bound/IL-5-bound IgG were observed in the sputa of those patients who worsened on therapy, suggesting an underlying autoimmune-mediated pathology.ConclusionA significant number of patients who meet currently approved indications for anti-IL5 mAbs show sub-optimal response to them in real-life clinical practice. Monitoring blood eosinophil count is not helpful to identify these patients. The concern of worsening of symptoms associated with immune-complex mediated complement-activation in a small proportion of these patients highlights the relevance of recognising airway autoimmune phenomena and this requires further evaluation.
BackgroundThe Nasal Allergen Challenge (NAC) model allows the study of Allergic Rhinitis (AR) pathophysiology and the proof of concept of novel therapies. The Allergic Rhinitis – Clinical Investigator Collaborative (AR-CIC) aims to optimize the protocol, ensuring reliability and repeatability of symptoms to better evaluate the therapies under investigation.Methods20 AR participants were challenged, with 4-fold increments of their respective allergens every 15 minutes, to determine the qualifying allergen concentration (QAC) at which the Total Nasal Symptom Score (TNSS) of ≥10/12 OR a Peak Nasal Inspiratory Flow (PNIF) reduction of ≥50% from baseline was achieved. At the NAC visit, the QAC was used in a single challenge and TNSS and PNIF were recorded at baseline, 15 minutes, 30 minutes, 1 hour, and hourly up to 12 hours. 10 additional ragweed allergic participants were qualified at TNSS of ≥8/12 AND ≥50% PNIF reduction; the Cumulative Allergen Challenge (CAC) of all incremental doses was used during the NAC visit. 4 non-allergic participants were challenged with the highest allergen concentration.ResultsIn the QAC study, a group qualified by only meeting PNIF criteria achieved lower TNSS than those achieving either TNSS criteria or PNIIF+TNSS (p<0.01). During the NAC visit, participants in both studies reached their peak symptoms at 15minutes followed by a gradual decline, significantly different from non-allergic participants. The “PNIF only” group experienced significantly lower TNSS than the other groups during NAC visit. QAC and CAC participants did not reach the same peak TNSS during NAC that was achieved at screening. QAC participants qualifying based on TNSS or TNSS+PNIF managed to maintain PNIF scores.ConclusionsParticipants experienced reliable symptoms of AR in both studies, using both TNSS and PNIF reduction as part of the qualifying criteria proved better for qualifying participants at screening. Phenotyping based on pattern of symptoms experienced is possible and allows the study of AR pathophysiology and can be applied in evaluation of efficacy of a novel medication. The AR-CIC aims to continue to improve the model and employ it in phase 2 and 3 clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.