Background
Gliomas are the most frequent and aggressive malignancies of the central nervous system. Decades of molecular analyses have demonstrated that gliomas accumulate genetic alterations that culminate in enhanced activity of receptor tyrosine kinases and downstream mediators. While the genetic alterations, like gene amplification or loss, have been well characterized, little information exists about changes in the proteome of gliomas of different grades.
Methods
We performed unbiased quantitative proteomics of human glioma biopsies by mass spectrometry followed by bioinformatic analysis.
Findings
Various pathways were found to be up- or downregulated. In particular, endocytosis as pathway was affected by a vast and concomitant reduction of multiple machinery components involved in initiation, formation, and scission of endocytic carriers. Both clathrin-dependent and -independent endocytosis were changed, since not only clathrin, AP-2 adaptins, and endophilins were downregulated, but also dynamin that is shared by both pathways. The reduction of endocytic machinery components caused increased receptor cell surface levels, a prominent phenotype of defective endocytosis. Analysis of additional biopsies revealed that depletion of endocytic machinery components was a common trait of various glioma grades and subclasses.
Interpretation
We propose that impaired endocytosis creates a selective advantage in glioma tumor progression due to prolonged receptor tyrosine kinase signaling from the cell surface.
Fund
This work was supported by Grants 316030-164105 (to P. Jenö), 31003A-162643 (to M. Spiess) and PP00P3-176974 (to G. Hutter) from the Swiss National Science Foundation. Further funding was received by the Department of Surgery from the University Hospital Basel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.