Spermatogenesis is a cyclic process in which diploid spermatogonia differentiate into haploid spermatozoa. This process is highly regulated, notably at the post-transcriptional level. MicroRNAs (miRNAs), single-stranded noncoding RNA molecules of about 20-25 nucleotides, are implicated in the regulation of many important biological pathways such as proliferation, apoptosis, and differentiation. We wondered whether miRNAs could play a role during spermatogenesis. The miRNA expression repertoire was tested in germ cells, and we present data showing that miR-34c was highly expressed only in these cells. Furthermore, our findings indicate that in male gonads, miR-34c expression is largely p53 independent in contrast to previous results showing a direct link in somatic cells between the miR-34 family and this tumor suppressor protein. In order to identify target genes involved in germinal lineage differentiation, we overexpressed miR-34c in HeLa cells, analyzed the transcriptome of these modified cells, and noticed a shift of the expression profile toward the germinal lineage. Recently, it has been shown that exogenous expression of Ddx4/Vasa in embryonic chicken stem cells (cESC) induces cESC reprogramming toward a germ cell fate. When we simultaneously expressed miR-34c in such cells, we could detect an up-regulation of germ cell-specific genes whereas the expression of other lineage specific markers remained unchanged. These data suggest that miR-34c could play a role by enhancing the germinal phenotype of cells already committed to this lineage.
The role of FSH and of testosterone in spermatogenesis has been a matter of controversy. In the present study, we addressed the involvement of these hormones in the regulation of the completion of meiosis of male rats under in vitro conditions. In the first series of experiments, middle/late pachytene spermatocytes were cocultured with Sertoli cells for 2 weeks in the absence or presence of FSH and/or testosterone. Treatment with both FSH and testosterone reduced slightly the percentage of apoptotic germinal cells in the cultures. Moreover, the number of round spermatids formed in vitro was enhanced by FSH or testosterone when compared with control cultures. Neither hormone influenced the half-life of round spermatids under the present culture conditions. The amounts of TP1 mRNAs in FSH-or FSH plus testosterone-treated cultures were higher than those of controls. In another series of experiments, round spermatids were incubated for 24 h in media conditioned by Sertoli cells cultured in the absence or presence of FSH and/or testosterone. TP1 mRNA contents of round spermatids incubated in media from Sertoli cells cultured in the presence of FSH and/or testosterone were two-to threefold higher than those of spermatids incubated in media from Sertoli cells cultured without hormones. These results indicate that FSH and testosterone have positive and somewhat overlapping effects on the meiotic divisions and the post-meiotic expression of a germ cell-specific gene, effects which cannot be related solely to their ability to reduce germinal cell apoptosis. Use of this culture system should help to test the effect of any hormone or factor on those steps in order to understand better their regulation.
NGF appears to be involved in spermatogenesis. However, mice lacking NGF or TrkA genes do not survive more than a few days whereas p75 NTR knockout mice are viable and fertile. Therefore, we addressed the effect of bNGF on spermatogenesis by using the systems of rat germ cell culture we established previously. bNGF did not modify the number of Sertoli cells, pachytene spermatocytes, secondary spermatocytes nor the half-life of round spermatids, but increased the number of secondary meiotic metaphases and decreased the number of round spermatids formed in vitro. These effects of bNGF were reversible and maximal at about 4 Â 10 À11 M. Conversely, K252a, a Trk-specific kinase inhibitor, enhanced the number of round spermatids above that of control cultures. The presence of bNGF and its receptors TrkA and p75 NTR was investigated in testis sections, in Sertoli cell and germ cell fractions, and in germ cell and Sertoli cell co-cultures. bNGF was detected only in germ cells from pachytene spermatocytes of stages VII up to spermatids of stages IX-X. TrkA and p75 NTR were detected in Sertoli cells and in these germ cells. Taken together, these results indicate that bNGF should participate in an auto/paracrine pathway of regulation of the second meiotic division of rat spermatocytes in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.