ACKNOWLEDGMENTSThis study was conducted under the auspices of the Bats and Wind Energy Cooperative. We wish to thank the American Wind Energy Association (AWEA), Bat Conservation International (BCI), the National Renewable Energy Laboratory-Department of Energy (NREL), and the U.S. Fish and Wildlife Service (USFWS) for partnering to form the Bats and Wind Energy Cooperative (BWEC). Tom Gray (AWEA), Alex Hoar (USFWS), Bob Thresher (NREL), and Merlin Tuttle (BCI) provided oversight for the BWEC the project.We wish to thank the U.S. Fish and Wildlife Service, donors to BCI, the National Renewable Energy Lab, and Iberdrola Renewables for funding the curtailment study at the Casselman Wind Project in 2008. We are indebted to Holly McCready, Jeff Miller, Erica LaMore, Mario Desilva, Brian Farless, Paula Shover, Ryan Claire, and Ann Zurbriggen for their dedication in the field and collecting and managing the data throughout the study. We thank Iberdrola Renewables employees, in particular Andy Linehan, Sam Enfield, Jason Bell, Scott McDonald, Dave DeCaro, and Chris Long, for their support and efforts to make this study happen and run smoothly. Zac Wilson (BCI) conducted all GIS analysis for the study. Finally, we appreciate the support and hospitality of the private landowners that graciously allowed access to their lands for this study; they should be commended for supporting proactive research for solving wildlife and wind energy issues. EXECUTIVE SUMMARYWe implemented the first U.S.-based experiment on the effectiveness of changing turbine cut-in speed on reducing bat fatality at wind turbines at the Casselman Wind Project in Somerset County, Pennsylvania. Our objectives were to 1) determine the difference in bat fatalities at turbines with different cut-in-speeds relative to fully operational turbines, and 2) determine the economic costs of the experiment and estimated costs for the entire project area under different curtailment prescriptions and timeframes.Twelve turbines of the 23 turbines at the site were randomly selected for the experiment and we employed three treatments at each turbine with four replicates on each night of the experiment: 1) fully operational, 2) cut-in speed at 5.0 m/s (C5 turbines), and 3) cut-in speed at 6.5 m/s (C6 turbines). We used a completely randomized design and treatments were randomly assigned to turbines each night of the experiment, with the night when treatments were applied being the experimental unit. We conducted daily searches at the 12 turbines from 26 July to 10 October 2008. During this same period, we also conducted daily searches at 10 different turbines that were part of a complementary study to determine if activity data collected prior to construction with acoustic detectors can be used to predict post-construction fatalities, and to meet permitting requirements of the Pennsylvania Game Commission's (PGC) voluntary agreement for wind energy (herein referred to as "PGC" turbines). These 10 turbines formed an alternative 'control' to the curtailed turbines. We perfo...
This note is based on a literature search and a recent review of bat mortality data from wind farms in Europe (published elsewhere). We suggest that mortality of bats at wind turbines may be linked to high-altitude feeding on migrating insects that accumulate at the turbine towers. Modern wind turbines seem to reach high enough into the airspace to interfere with the migratory movements of insects. The hypothesis is consistent with recent observations of bats at wind turbines. It is supported by the observation that mortality of bats at wind turbines is highly seasonal (August-September) and typically peaks during nights with weather conditions known to trigger large-scale migratory movements of insects (and songbirds). We also discuss other current hypotheses concerning the mortality of bats at wind turbines.
Active surveillance of bats in France started in 2004 with an analysis of 18 of the 45 bat species reported in Europe. Rabies antibodies were detected in six indigenous species, mainly in Eptesicus serotinus and Myotis myotis, suggesting previous contact with the EBLV-1 rabies virus. Nineteen of the 177 tested bats were shown serologically positive in seven sites, particularly in central and south-western France. Neither infectious viral particles nor viral genomes were detected in 173 and 308 tested oral swabs, respectively. The presence of neutralising antibodies in female bats (18.6%) was significantly higher than in males (5.6%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.