This paper investigates how to adapt some discrepancy-based search methods to solve Hybrid Flow Shop (HFS) problems in which each stage consists of several identical machines operating in parallel. The objective is to determine a schedule that minimises the makespan. We present here an adaptation of the Depth-bounded Discrepancy Search (DDS) method to obtain near-optimal solutions with makespan of high quality. This adaptation for the HFS contains no redundancy for the search tree expansion. To improve the solutions of our HFS problem, we propose a local search method, called Climbing Depth-bounded Discrepancy Search (CDDS), which is a hybridisation of two existing discrepancy-based methods: DDS and Climbing Discrepancy Search (CDS). CDDS introduces an intensification process around promising solutions. These methods are tested on benchmark problems. Results show that discrepancy methods give promising results and CDDS method gives the best solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.