2007
DOI: 10.1504/ejie.2007.014110
|View full text |Cite
|
Sign up to set email alerts
|

Climbing depth-bounded discrepancy search for solving hybrid flow shop problems

Abstract: This paper investigates how to adapt some discrepancy-based search methods to solve Hybrid Flow Shop (HFS) problems in which each stage consists of several identical machines operating in parallel. The objective is to determine a schedule that minimises the makespan. We present here an adaptation of the Depth-bounded Discrepancy Search (DDS) method to obtain near-optimal solutions with makespan of high quality. This adaptation for the HFS contains no redundancy for the search tree expansion. To improve the sol… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
15
0
2

Year Published

2008
2008
2013
2013

Publication Types

Select...
5
1
1

Relationship

4
3

Authors

Journals

citations
Cited by 22 publications
(17 citation statements)
references
References 20 publications
0
15
0
2
Order By: Relevance
“…Climbing Depth-bounded Discrepancy Search (CDDS) [5] which combines both the CDS and the DDS methods. With this method, one can restrict neighborhoods to be visited by only using discrepancies on variables at the top of the tree (see Algorithm 3).…”
Section: Proposed Discrepancy-based Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…Climbing Depth-bounded Discrepancy Search (CDDS) [5] which combines both the CDS and the DDS methods. With this method, one can restrict neighborhoods to be visited by only using discrepancies on variables at the top of the tree (see Algorithm 3).…”
Section: Proposed Discrepancy-based Methodsmentioning
confidence: 99%
“…Basically, a discrepancy occurs if the choice of a variable does not follow the rank of the ordering heuristic (the initial instantiation). The method stops when a solution is found 5 (if such a solution does exist) or when an inconsistency is detected (the tree is entirely expanded).…”
Section: Limited Discrepancy Searchmentioning
confidence: 99%
See 1 more Smart Citation
“…Pour résoudre les problèmes d'ordonnancement, les chercheurs ont longtemps utilisé des approches exactes comme la programmation linéaire, la méthode de séparation et d'évaluation ou encore la programmation dynamique [Blazewicz et al, 1994;Pinedo, 2002;Puchinger et Raidi, 2005;Pelikan et Sastry, 2006;Allahverdi et al, 2008]. Depuis quelques années, des chercheurs ont approché certains problèmes d'ordonnancement avec la programmation par contraintes [LePape, 1994;LePape et Nuijten, 1995;Nuitjen et Aarts, 1996;Pesant et Gendreau, 1996;Baptiste, 1998;Nuijten et Pape, 1998;Shaw, 1998;Harjunkoski et al, 2000;Pinedo, 2002;Hnich et al, 2004;Hmida et al, 2007], et plus particulièrement l'ordonnancement basé sur les contraintes, branche de la programmation par contraintes dédiée aux problèmes d'ordonnancement, qui est une discipline assez jeune [Baptiste et al, 2001]. [Tan et al, 2000;Gagné et al, 2002;Liao et Juan, 2007;Allahverdi et al, 2008].…”
Section: Objectifs De La Rechercheunclassified
“…Finalement, le CDS (Climbing Discrepancy Search) est une méthode de recherche locale qui adapte la notion de divergence afin de trouver une bonne solution à des problèmes d'optimisation combinatoire . Le CDDS (Climbing Depth-Bounded Discrepancy Search) [Hmida et al, 2007] est une adaptation du CDS qui limite la profondeur de génération des solutions comme le DDS.…”
Section: Dans Ce Dernier Cas Nous Parlons De Problèmes D'optimisatiounclassified