Riboswitches are regulatory elements modulating gene expression in response to specific metabolite binding. It has been recently reported that riboswitch agonists may exhibit antimicrobial properties by binding to the riboswitch domain. Guanine riboswitches are involved in the regulation of transport and biosynthesis of purine metabolites, which are critical for the nucleotides cellular pool. Upon guanine binding, these riboswitches stabilize a 5′-untranslated mRNA structure that causes transcription attenuation of the downstream open reading frame. In principle, any agonistic compound targeting a guanine riboswitch could cause gene repression even when the cell is starved for guanine. Antibiotics binding to riboswitches provide novel antimicrobial compounds that can be rationally designed from riboswitch crystal structures. Using this, we have identified a pyrimidine compound (PC1) binding guanine riboswitches that shows bactericidal activity against a subgroup of bacterial species including well-known nosocomial pathogens. This selective bacterial killing is only achieved when guaA, a gene coding for a GMP synthetase, is under the control of the riboswitch. Among the bacterial strains tested, several clinical strains exhibiting multiple drug resistance were inhibited suggesting that PC1 targets a different metabolic pathway. As a proof of principle, we have used a mouse model to show a direct correlation between the administration of PC1 and the reduction of Staphylococcus aureus infection in mammary glands. This work establishes the possibility of using existing structural knowledge to design novel guanine riboswitch-targeting antibiotics as powerful and selective antimicrobial compounds. Particularly, the finding of this new guanine riboswitch target is crucial as community-acquired bacterial infections have recently started to emerge.
Group B Streptococcus (GBS) is a commensal bacterium present in the lower genital tract of 15-30% of healthy pregnant women. GBS is the leading cause of chorioamnionitis and cerebral injuries in newborns, occurring most often in the absence of maternofetal pathogen translocation. Despite GBS being the most frequent bacterium colonizing pregnant women, no preclinical studies have investigated the impact of end-gestational maternal GBS exposure on the offspring's brain development and its behavioral correlates. Our hypothesis is that GBS-induced gestational infection/inflammation has a deleterious neurodevelopmental impact on uninfected offspring. Our goal was to study the impact of maternal GBS infection on the placental and neurodevelopmental features in the offspring using a new preclinical rat model. GBS-exposed placentas exhibited chorioamnionitis characterized by the presence of Gram-positive cocci and polymorphonuclear cells, with the latter being significantly more prominent in the labyrinth of male offspring. GBS-exposed male offspring had reduced thickness of periventricular white matter. In addition, they exhibited autistic-like behaviors, such as abnormal social interaction and communication, impaired processing of sensory information and hyperactivity. Overall, these data show for the first time that gestational exposure to GBS plays an important role in the generation of neurodevelopmental abnormalities reminiscent of human autism spectrum disorders (ASD). These results provide new evidence in favor of the role of a common and modifiable infectious/inflammatory environmental factor in human ASD pathophysiology. Autism Res 2017, 10: 233-245. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Group B Streptococcus (GBS) is one of the most common bacteria isolated in human chorioamnionitis, which is a major risk factor for premature birth and brain injuries. Males are at greater risk than females for developing lifelong neurobehavioural disorders, although the origins of this sex bias remain poorly understood. We previously showed that end-gestational inflammation triggered by GBS led to early neurodevelopmental impairments mainly in the male rat progeny. Identifying key inflammatory players involved in maternofetal immune activation by specific pathogens is critical to develop appropriate novel therapeutic interventions. We aimed to map out the GBS-induced profile of innate immune biomarkers in the maternal-placental-fetal axis, and to compare this immune profile between male and female tissues. We describe here that the GBS-induced immune signalling involved significantly higher levels of interleukin (IL)-1β, cytokine-induced neutrophil chemoattractant-1 (CINC-1/CXCL1) and polymorphonuclear cells (PMNs) infiltration in male compared to female maternofetal tissues. Although male – but not female – fetuses presented increased levels of IL-1β, fetuses from both sexes in-utero exposed to GBS had increased levels of TNF-α in their circulation. Levels of IL-1β detected in fetal sera correlated positively with the levels found in maternal circulation. Here, we report for the first time that the maternofetal innate immune signalling induced by GBS presents a sexually dichotomous profile, with more prominent inflammation in males than females. These sex-specific placental and fetal pro-inflammatory responses are in keeping with the higher susceptibility of the male population for preterm birth, brain injuries and neurodevelopmental disorders such as cerebral palsy and autism spectrum disorders.
Staphylococcus aureus is a leading cause of intramammary infections (IMI). We recently demonstrated that Staph. aureus strains express the gene guaA during bovine IMI. This gene codes for a guanosine monophosphate synthetase and its expression is regulated by a guanine riboswitch. The guanine analog 2,5,6-triaminopyrimidine-4-one (PC1) is a ligand of the guanine riboswitch. Interactions between PC1 and its target result in inhibition of guanosine monophosphate synthesis and subsequent death of the bacterium. The present study describes the investigational use of PC1 for therapy of Staph. aureus IMI in lactating cows. The in vitro minimal inhibitory concentration of PC1 ranged from 0.5 to 4 μg/mL for a variety of Staph. aureus and Staphylococcus epidermidis strains and required a reducing agent for stability and full potency. A safety assessment study was performed, whereby the healthy quarters of 4 cows were infused with increasing doses of PC1 (0, 150, 250, and 500 mg). Over the 44 h following infusions, no obvious adverse effect was observed. Ten Holstein multiparous cows in mid lactation were then experimentally infused into 3 of the quarters with approximately 50 cfu of Staph. aureus strain SHY97-3906 and infection was allowed to progress for 2 wk before starting PC1 treatment. Bacterial counts reached then about 10(3) to 10(4) cfu/mL of milk. Infected quarters were treated with 1 of 3 doses of PC1 (0, 250, or 500 mg) after each morning and evening milking for 7d (i.e., 14 intramammary infusions of PC1). During the treatment period, milk from PC1-treated quarters showed a significant reduction in bacterial concentrations. However, this reduction of Staph. aureus count in milk was not maintained during the 4 wk following the end of the treatment and only 15% of the PC1-treated quarters underwent bacteriological cure. The somatic cell count and the quarter milk production were not affected by treatments. Although bacterial clearance was not achieved following treatment with PC1, these results demonstrate that the Staph. aureus guanine riboswitch represents a relevant and promising drug target for a novel class of antibiotics for the animal food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.