LaRa (Lander Radioscience) is an experiment on the ExoMars 2020 mission that uses the Doppler shift on the radio link due to the motion of the ExoMars platform tied to the surface of Mars with respect to the Earth ground stations (e.g. the deep space network stations of NASA), in order to precisely measure the relative velocity of the lander on Mars with respect to the Earth. The LaRa measurements shall improve the understanding of the structure and processes in the deep interior of Mars by obtaining the rotation and orientation of Mars with a better precision compared to the previous missions. In this paper, we provide the analysis done until now for the best realization of these objectives. We explain the geophysical observation that will be reached with LaRa (Length-of-day variations, precession, nutation, and possibly polar motion). We develop the experiment set up, which includes the ground stations on Earth (so-called ground segment). We describe the instrument, i.e. the transponder and its three antennas. We further detail the link budget and the expected noise level that will be reached. Finally, we detail the expected results, which encompasses the explanation of how we shall determine Mars' orientation parameters, and the way we shall deduce Mars' interior structure and Mars' atmosphere from them. Lastly, we explain briefly how we will be able to determine the Surface platform position.
The position of a Martian lander is affected by different aspects of Mars' rotational motions: the nutations, the precession, the length-of-day variations and the polar motion. These various motions have a different signature in a Doppler observable between the Earth and a lander on Mars' surface. Knowing the correlations between these signatures and the moments when these signatures are not null during one day or on a longer timescale is important to identify strategies that maximize the geophysical return of observations with a geodesy experiment, in particular for the ones on-board the future NASA InSight or ESA-Roscosmos ExoMars2020 missions. We provide first-order formulations of the signature of the rotation parameters in the Doppler and range observables. These expressions are functions of the diurnal rotation of Mars, the lander position, the planet radius and the rotation parameter. Additionally, the nutation signature in the Doppler observable is proportional to the Earth declination with respect to Mars. For a lander on Mars close to the equator, the motions with the largest signature in the Doppler observable are due to the length-of-day variations, the precession rate and the rigid nutations. The polar motion and the liquid core signatures have a much smaller amplitude. For a lander closer to the pole, the polar motion signature is enhanced while the other signatures decrease. We also numerically evaluate the amplitudes of the rotation parameters signature in the Doppler observable for landers on other planets or moons.
Two years after InSight's arrival at Mars, the ExoMars 2020 mission will land on the opposite side of the red planet. Similarly to InSight, which carries the RISE (Rotation and Interior Structure Experiment) radio-science experiment, the ExoMars mission will have on board the Lander Radio-science (LaRa) experiment. The X-band transponders on RISE and LaRa, allowing for direct radio-link between the landers and stations on Earth, are dedicated to the investigation of Mars' deep interior through the precise measurement of the planet's rotation and orientation. The benefit of having LaRa after RISE for the determination of the Mars orientation and rotation parameters is demonstrated and the resulting improved constraints on the interior structure of Mars and, in particular, on its core are quantified via numerical simulations. In particular, we show that the amplitudes of the semi-annual prograde (p2) and the ter-annual retrograde (r3) nutations will be determined with a precision of 6 and 4 milliarcseconds respectively by combining 700 days of RISE data with 700 days of LaRa data, about 35% more precise than what is expected from RISE alone. The impact of such an improvement on the determination of the core size of Mars is discussed and shown to be significant.
S u m m a r y The rate and orientation of addition of hepta-olefins the substituent has virtually no effect on the rate of fluoropropyl radicals to a series of fluoro-olefins in the addition. Only with 1, l-difluoroethylene and 3,3,3-trigas phase has been determined by a competitive method. fluoropropene does there appear to be appreciable retarda-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.