The biologically active forms of human immunodeficiency viruses type 1 and 2 reverse transcriptase (RT) found in infectious virions are heterodimers. We have previously shown that the dimeric nature of reverse transcriptase represents an important target for the design of a new class of antiviral agents and have designed a short peptide (Pep-7) derived from the tryptophan-rich motif of the connection subdomain that blocks dimerization of reverse transcriptase in vitro and abolishes viral infection. In the present work, we have investigated the mechanism through which this peptide inhibits RT dimerization and consequently viral propagation. We demonstrate that Pep-7 interacts preferentially with the p51 subunit within the heterodimeric reverse transcriptase, which destabilizes reverse transcriptase dimer conformation, thereby triggering dissociation. We have identified two residues Trp(24) and Phe(61), located on the fingers subdomain of p51, required for Pep-7 binding. Selective mutation of these residues on p51 to a glycine dramatically alters the stability of the RT-heterodimer suggesting that the fingers subdomain of p51 is also involved in stabilization of reverse transcriptase. We propose that the binding site of Pep-7 is located in a cleft between the fingers and the connection subdomains of p51 that contains the two highly conserved residues Phe(61) and Trp(24).
The sporulation-related gamma-D-glutamyl-(L)meso-diaminopimelic-acid-hydrolysing peptidase I of Bacillus sphaericus NCTC 9602 has been analysed by proton-induced X-ray emission. It contains 1 equivalent Zn2+ per mol of protein. As derived from gene cloning and sequencing, the B. sphaericus Zn peptidase I is a two-module protein. A 100-amino-acid-residue N-terminal domain consisting of two tandem segments of similar sequences, is fused to a 296-amino-acid-residue C-terminal catalytic domain. The catalytic domain belongs to the Zn carboxypeptidase A family, the closest match being observed with the Streptomyces griseus carboxypeptidase [Narahashi (1990) J. Biochem. 107, 879-886] and with the family prototype, bovine carboxypeptidase A. The catalytic domain of the B. sphaericus peptidase I possesses, distributed along the amino-acid sequence, peptide segments, a triad His162-Glu165-His307 and a dyad Tyr347-Glu366 that are equivalent to secondary structures, the zinc-binding triad His69-Glu72-His196 and the catalytic dyad Tyr248-Glu270 of bovine carboxypeptidase A respectively. The N-terminal repeats of the B. sphaericus peptidase I have similarity with the C-terminal repeats of the Enterococcus hirae muramidase 2, the Streptococcus (now Enterococcus) faecalis autolysin and the Bacillus phi PZA and phi 29 lysozymes, to which a role in the recognition of a particular moiety of the bacterial cell envelope has been tentatively assigned. Detergents enhance considerably the specific activity of the B. sphaericus peptidase I.
Iturinic antibiotics, produced by different strains of Bacillus subtilis, contain long-chain beta-amino acids (beta-AA). The regulation of the synthesis of fatty acids (FA) and beta-AA was studied by modifying the culture medium. Addition of possible precursors, branched-chain alpha-amino acids, to the medium affected the FA and beta-AA compositions. According to this, the B. subtilis strains can be divided into two groups. The first contains the producers of mycosubtilin and bacillomycin F which synthesize a high level of iso C16 chains; the second contains the producers of bacillomycin D, bacillomycin L and iturin which synthesize a high level of n carbon chains. The incorporation of radioactive sodium acetate into FA and beta-AA showed rapid FA synthesis followed by a second synthetic step. Although the detailed mechanism has not yet been elucidated, this second step, corresponding to the beta-AA synthesis, seemed to be a key step in determining the alkyl chain of beta-AA.
The gene encoding the Bacillus sphaericus gamma-D-glutamyl-L-diamino acid endopeptidase II, a cytoplasmic enzyme involved in cell sporulation [1], contains the information for a 271-amino acid protein devoid of a signal peptide. The endopeptidase lacks sequence relatedness with other proteins of known primary structure except that its C-terminal region has significant similarity with the C-terminal region of the 54-kDa P54 protein of Enterococcus faecium, of unknown function [2].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.