IL-1R3 is the co-receptor in three signaling pathways that involve six cytokines of the IL-1 family (IL-1α, IL-1β, IL-33, IL-36α, IL-36β and IL-36γ). In many diseases, multiple cytokines contribute to disease pathogenesis. For example, in asthma, both IL-33 and IL-1 are of major importance, as are IL-36 and IL-1 in psoriasis. We developed a blocking monoclonal antibody (mAb) to human IL-1R3 (MAB-hR3) and demonstrate here that this antibody specifically inhibits signaling via IL-1, IL-33 and IL-36 in vitro. Also, in three distinct in vivo models of disease - crystal-induced peritonitis, allergic airway inflammation and psoriasis, we found that targeting IL-1R3 with a single mAb to mouse IL-1R3 (MAB-mR3) significantly attenuated heterogeneous cytokine–driven inflammation and disease severity. We conclude that in diseases driven by multiple cytokines, a single antagonistic agent such as a mAb to IL-1R3 is a novel therapeutic option with considerable translational benefit.
Renal ischemia-reperfusion injury is the state of which a tissue experiences injury after a phase of restrictive blood supply and recirculation. Ischemia-reperfusion injury (I/R-I) is a leading cause of acute kidney injury (AKI) in several disease states, including kidney transplantation, sepsis, and hypovolemic shock. The most common methods to evaluate AKI are creatinine clearance, plasma creatinine, blood urea nitrogen, or renal histology. However, currently, there are no precise methods to directly assess renal injury state noninvasively. Hyperpolarized C-pyruvate MRI enables noninvasive accurate quantification of the in vivo conversion of pyruvate to lactate, alanine, and bicarbonate. In the present study, we investigated the in situ alterations of metabolic conversion of pyruvate to lactate, alanine, and bicarbonate in a unilateral I/R-I rat model with 30 min and 60 min of ischemia followed by 24 h of reperfusion. The pyruvate conversion was unaltered compared with sham in the 30 min I/R-I group, while a significant reduced metabolic conversion was found in the postischemic kidney after 60 min of ischemia. This indicates that after 30 min of ischemia, the kidney maintains normal metabolic function in spite of decreased kidney function, whereas the postischemic kidney after 60 min of ischemia show a generally reduced metabolic enzyme activity concomitant with a reduced kidney function. We have confidence that these findings can have a high prognostic value in prediction of kidney injury and the outcome of renal injury.
Renal ischemia/reperfusion (I/R) can lead to impaired urine concentration ability and increased fractional excretion of sodium (FeNa). Local ischemic preconditioning improves renal water and sodium handling after I/R injury. Here, we investigate whether remote ischemic perconditioning (rIPeC) prevents dysregulation of renal water and salt handling in response to I/R injury and mechanisms that may be involved. Rats were subjected to right nephrectomy and randomized into a sham group or an I/R group. In the I/R group, rats were subjected to 37 min of renal ischemia and 3 days of reperfusion. rIPeC was applied to the abdominal aorta. Blood and urine were collected on day 3 postoperatively for clearance studies. The expression of aquaporins (AQPs) and the sodium transporter Na–K‐ATPase were analyzed using immunoblotting and immunohistochemistry. I/R injury resulted in polyuria, increased FeNa, and decreased urine osmolality compared to sham rats. rIPeC attenuated the increase in FeNa and the decrease in urine osmolality. Expression of AQP1, AQP2, phosphorylated AQP2 (pAQP2), and Na–K‐ATPase was downregulated in I/R rats. rIPeC attenuated the reductions in AQP2 and pAQP2 expression. Immunohistochemistry revealed decreased labeling of Na–K‐ATPase in the outer medulla in I/R kidneys compared to kidneys from sham and I/R + rIPeC rats. After renal ischemia, the expression of Na–K‐ATPase was substantially reduced in the outer medullary thick ascending limb. In conclusion, our data suggest that rIPeC might prevent dysregulation of renal water and salt handling via regulation of AQP2 expression and phosphorylation as well as via regulation of Na–K‐ATPase expression in I/R rat kidneys.
Ischemia-reperfusion injury (IRI) is the major cause of acute kidney injury. Remote ischemic conditioning (rIC) performed as brief intermittent sub-lethal ischemia and reperfusion episodes in a distant organ may protect the kidney against IRI. Here we investigated the renal effects of rIC applied either prior to (remote ischemic preconditioning; rIPC) or during (remote ischemic perconditioning; rIPerC) sustained ischemic kidney injury in rats. The effects were evaluated as differences in creatinine clearance (CrCl) rate, tissue tubular damage marker expression, and potential kidney recovery mediators. One week after undergoing right-sided nephrectomy, rats were randomly divided into four groups: sham (n = 7), ischemia and reperfusion (IR; n = 10), IR+rIPC (n = 10), and IR+rIPerC (n = 10). The rIC was performed as four repeated episodes of 5-minute clamping of the infrarenal aorta followed by 5-minute release either before or during 37 minutes of left renal artery clamping representing the IRI. Urine and blood were sampled prior to ischemia as well as 3 and 7 days after reperfusion. The kidney was harvested for mRNA and protein isolation. Seven days after IRI, the CrCl change from baseline values was similar in the IR (δ: 0.74 mL/min/kg [-0.45 to 1.94]), IR+rIPC (δ: 0.21 mL/min/kg [-0.75 to 1.17], p > 0.9999), and IR+rIPerC (δ: 0.41 mL/min/kg [-0.43 to 1.25], p > 0.9999) groups. Kidney function recovery was associated with a significant up-regulation of phosphorylated protein kinase B (pAkt), extracellular regulated kinase 1/2 (pERK1/2), and heat shock proteins (HSPs) pHSP27, HSP32, and HSP70, but rIC was not associated with any significant differences in tubular damage, inflammatory, or fibrosis marker expression. In our study, rIC did not protect the kidney against IRI. However, on days 3–7 after IRI, all groups recovered renal function. This was associated with pAkt and pERK1/2 up-regulation and increased HSP expression at day 7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.