Friction stir welding (FSW) is a quite recent welding method which takes advantage of being performed in the solid state. Compared with the usual welding processes, it therefore presents many benefits such as a lower heat-input, a reduction of residual stresses and an elimination of the solidification defects etc.. Up to now, it has essentially been applied to aluminium alloys and far more recently to a small number of bimaterials.
The present study deals with three kinds of beads between pure copper and a 6082 aluminium alloy. Both materials were butt joined by FSW. The welds differ by the location of the tool which was placed either at the interface between the two metals or on the copper or the 6082 side of this surface. Their structure was characterized at a multi-scale level by using a number of techniques. Tensile and microhardness tests were also performed. The tool place is shown to govern the microstructure and the ensuing mechanical behaviour of the weld. Its influence on the plastic flow with its repercussions on i) welding defects and ii) mechanical properties is going to be demonstrated. Some ways of improvement of the welding process will finally be suggested.
The current work focuses on the particular case of dissimilar 6082 Al alloy/pure copper butt-friction stirred joints. It takes advantage of voluntarily non optimized welding conditions in order to test the potential of an original approach of identification of the welding defects by means of a single tensile test. The sequence and mechanism of the fracture events arise from their localization on the fracture surfaces thanks to strain maps obtained by digital image correlation. This technique of flaws identification is proved to be particularly efficient at least with the present highly damaged welds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.