The cultural heritage of a region, be it a highly visited one or not, is a formidable asset for the promotion of its tourism. In many places around the world, an important part of this cultural heritage has been catalogued by initiatives backed by governments and organisations. However, as of today, most of this data has been mostly unknown, or of difficult access, to the general public. In this paper, we present research that aims to leverage this data to promote tourism. Our first field of application focuses on the French Pyrenees. In order to achieve our goal, we worked on two fronts: (i) the ability to export this data from their original databases and data models to well-known open data platforms; and (ii) the proposition of an open-source algorithm and framework capable of recommending a sequence of cultural heritage points of interests (POIs) to be visited by tourists. This itinerary recommendation approach is original in many aspects: it not only considers the user preferences and popularity of POIs, but it also integrates different contextual information about the user as well as the relevance of specific sequences of POIs (strong links between POIs). The ability to export the cultural heritage data as open data and to recommend sequences of POIs are being integrated in a first prototype.
The goal of this research is to design and prototype an intelligent collaborative learning environment. Within this environment, we study synchronous interaction among group members (students) working on a problem/project. Students use an Intelligent Collaborative Support System (ICSS) and a shared activity space: the Tulka Whiteboard. Two main interaction spaces have been implemented: a planning-communication space and a production space. Dialogue and negotiation are supported through the ICSS permitting exchange and evaluation of free-text communication messages that are initiated by students choosing sentence openers from a menu. Using the whiteboard, a virtual room is dedicated to a group of students who share documents, annotations on documents, drawing tools, and text tools. Each group is provided a dynamic assessment of their collaborative skills based on a communication skills model.
Here we design a semantic trajectory model responding to specific needs expressed by tourism analyst experts. Thus, this model takes into account: (i) the description of sequences of imbricated semantic segments, (ii) the definition of enrichment data integrating spatial, temporal and thematic dimensions and (iii) the association of such data with positions or with trajectory segments. Each of these features is necessary for the processing and analysis of tourist mobility data, which we will detail. For validation purposes, we experiment our model on two outdoor mobility track scenarios computed in a processing chain. We also show that our model is generic and extensible thanks to two other scenarios on different datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.