Involvement of an oxidative burst, usually related to incompatible plant/pathogen interactions leading to hypersensitive reactions, was investigated with Erwinia amylovora, the causal agent of fire blight of Maloideae subfamily of Rosaceae, in interaction with pear (Pyrus communis; compatible situation) and tobacco (Nicotiana tabacum; incompatible situation). As expected, this necrogenic bacterium induced in tobacco a sustained production of superoxide anion, lipid peroxidation, electrolyte leakage, and concomitant increases of several antioxidative enzymes (ascorbate peroxidases, glutathion reductases, glutathion-S-transferases, and peroxidases), in contrast to the compatible pathogen Pseudomonas syringae pv tabaci, which did not cause such reactions. In pear leaves, however, inoculations with both the disease-and the hypersensitive reaction-inducing bacteria (E. amylovora and P. syringae pv tabaci, respectively) resulted in superoxide accumulation, lipid peroxidation, electrolyte leakage, and enzyme induction at similar rates and according to equivalent time courses. The unexpected ability of E. amylovora to generate an oxidative stress even in compatible situation was linked to its functional hrp (for hypersensitive reaction and pathogenicity) cluster because an Hrp secretion mutant of the bacteria did not induce any plant response. It is suggested that E. amylovora uses the production of reactive oxygen species as a tool to provoke host cell death during pathogenesis to invade plant tissues. The bacterial exopolysaccharide could protect this pathogen against the toxic effects of oxygen species since a non-capsular mutant of E. amylovora induced locally the same responses than the wild type but was unable to further colonize the plant.
To investigate the role of iron in Erwinia amylovora pathogenicity, virulence properties of two mutants of strain CFBP 1430 isolated by insertional mutagenesis and affected in the iron transport pathway mediated by desferrioxamine (DFO) were analyzed. One mutation (dfoA::MudIIpR13) disrupts DFO biosynthesis. The present analysis shows that this mutation affects an open reading frame that belongs to a biosynthetic gene cluster and shares identity with the alcA gene required for synthesis of the siderophore alcaligin in Bordetella spp. A second mutation (foxR::MudIIpR13) affects the synthesis of the ferrioxamine receptor FoxR, encoded by the foxR gene, and was shown to be transcribed into a monocistronic message. Accordingly, the foxR mutant accumulates DFO in the external medium. The growth of the mutants when supplied with various iron sources was examined; it indicates that the production of DFO and the specific transport of the DFO ferric complex are required only when iron is strongly liganded. Pathogenicity was scored after inoculation of apple seedlings and after infection of apple flowers. On seedlings, the DFO biosynthetic mutant behaved like the wild-type strain while the frequency of necrotic plants caused by the receptor mutant decreased by a factor of two to five, depending on the initial inoculum. On flowers, both mutants were strongly affected in their ability to initiate a necrotic symptom and their growth was reduced by two orders of magnitude relative to the wild-type strain. However, the virulence of the dfoA mutant varied with the inoculum concentration. Unlike the foxR mutant, the dfoA mutant only weakly induced plant cell electrolyte leakage in tobacco leaf disks. The supply with exogenous DFO, only when iron free, restored the ability to induce electrolyte leakage to the dfoA mutant and increased the leakage induced by other strains. DFO alone was not an inducer. Iron-free DFO was able to protect E. amylovora cells against lethal doses of hydrogen peroxide. The main conclusion was that production of DFO in E. amylovora during pathogenesis is not only a critical function for iron acquisition, but can play a role in the oxidative burst elicited by the bacteria.
Although fire blight, caused by the bacterium Erwinia amylovora, is one of the most destructive diseases of apple (Malus · domestica) worldwide, no major, qualitative gene for resistance to this disease has been identified to date in apple. We conducted a quantitative trait locus (QTL) analysis in two F 1 progenies derived from crosses between the cultivars Fiesta and either Discovery or Prima. Both progenies were inoculated in the greenhouse with the same strain of E. amylovora, and the length of necrosis was scored 7 days and 14 days after inoculation. Additive QTLs were identified using the MAPQTL software, and digenic epistatic interactions, which are an indication of putative epistatic QTLs, were detected by two-way analyses of variance. A major QTL explaining 34.3-46.6% of the phenotypic variation was identified on linkage group (LG) 7 of Fiesta in both progenies at the same genetic position. Four minor QTLs were also identified on LGs 3, 12 and 13. In addition, several significant digenic interactions were identified in both progenies. These results confirm the complex polygenic nature of resistance to fire blight in the progenies studied and also reveal the existence of a major QTL on LG7 that is stable in two distinct genetic backgrounds. This QTL could be a valuable target in marker-assisted selection to obtain new, fire blight-resistant apple cultivars and forms a starting point for discovering the function of the genes underlying such QTLs involved in fire blight control.
Erwinia amylovora is the causal agent of fire blight, a disease affecting members of subfamily Maloideae. In order to analyze mechanisms leading to compatible or incompatible interactions, early plant molecular events were investigated in two genotypes of Malus with contrasting susceptibility to fire blight, after confrontation with either E. amylovora or the incompatible tobacco pathogen Pseudomonas syringae pv. tabaci. Many defense mechanisms, including generation of an oxidative burst and accumulation of pathogenesis-related proteins, were elicited in both resistant and susceptible genotypes by the two pathogens at similar rates and according to an equivalent time course. This elicitation was linked with the functional hypersensitive reaction and pathogenicity (hrp) cluster of E. amylovora, because an hrp secretion mutant did not induce such responses. However, a delayed induction of several genes of various branch pathways of the phenylpropanoid metabolism was recorded in tissues of the susceptible genotype challenged with the wild-type strain of E. amylovora, whereas these genes were quickly induced in every other plant-bacteria interaction, including interactions with the hrp secretion mutant. This suggests the existence of hrp-independent elicitors of defense in the fire blight pathogen as well as hrp-dependant mechanisms of suppression of these nonspecific inductions.
Fire blight, caused by the bacterium Erwinia amylovora, is one of the most destructive diseases of apple (Malus xdomestica) worldwide. No major, qualitative gene for resistance to this disease has been identified so far in apple. A quantitative trait locus (QTL) analysis was performed in two F1 progenies derived from two controled crosses: one between the susceptible rootstock cultivar 'MM106' and the resistant ornamental cultivar 'Evereste' and the other one between the moderately susceptible cultivar 'Golden Delicious' and the wild apple Malus floribunda clone 821, with unknown level of fire blight resistance. Both progenies were inoculated in the greenhouse with the same reference strain of E. amylovora. The length of stem necrosis was scored 7 and 14 days after inoculation. A strong QTL effect was identified in both 'Evereste' and M. floribunda 821 at a similar position on the distal region of linkage group 12 of the apple genome. From 50% to 70% of the phenotypic variation was explained by the QTL in 'Evereste' progeny according to the scored trait. More than 40% of the phenotypic variation was explained by the M. floribunda QTL in the second progeny. It was shown that 'Evereste' and M. floribunda 821 carried distinct QTL alleles at that genomic position. A small additional QTL was identified in 'Evereste' on linkage group 15, which explained about 6% of the phenotypic variation. Although it was not possible to confirm whether or not 'Evereste' and M. floribunda QTL belonged to the same locus or two distinct closely related loci, these QTL can be valuable targets in marker-assisted selection to obtain fire blight resistant apple cultivars and form a starting point for discovering the function of the genes controlling apple fire blight resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.