SummaryIn Erwinia amylovora, the dsp region, required for pathogenicity on the host plant but not for hypersensitive elicitation on tobacco, is separated from the hrp region by 4 kb. The genetic analysis reported in this paper showed that this 4 kb region is not required for pathogenicity on pear seedlings. The environmental conditions allowing expression of a dsp ::lacZ fusion were examined: expression was barely detected in rich medium at 30ЊC, and the highest expression was observed in M9 galactose minimal medium at 25ЊC. A dsp ::uidA fusion appeared to be expressed only in a HrpL-proficient strain, indicating that the dsp region, like the hrp region, is positively controlled via the alternative factor HrpL. Sequence analysis revealed that the dsp cluster encodes two genes, dspA (5517 bp) and dspB (420 bp), and that the insertions leading to the dsp ::lacZ and the dsp ::uidA fusions were within dspA. A HrpL-dependent promoter sequence (GGAACC-N 15 -CAACA) was identified upstream of dspA, and primer extension analysis detected four transcriptional starts 7, 8, 9 and 10 bp downstream of this sequence. A 70 promoter sequence (TTGCCC-N 16 -GATAAT) was observed upstream of dspB. The functionality of this second promoter was confirmed by complementation analysis. This promoter allowed constitutive expression of dspB, as measured by the expression of a dspB ::uidA fusion in rich medium. In M9 galactose medium, however, HrpL was shown to activate dspB, as expression of the dspB ::uidA fusion was twofold higher in a HrpL þ background than in a HrpL ¹ background. Transposon insertions in either dspA or dspB led to a non-pathogenic phenotype. Thus, both DspA and DspB were required for E. amylovora pathogenicity, as dspB could be expressed independently of dspA. DspA and DspB were visualized as polypeptides with apparent sizes of 190 kDa and 15.5 kDa, respectively, when encoded in the T7 polymerase/promoter system. DspA, which showed homology with the protein predicted from the partial sequence of Pseudomonas syringae pv. tomato avrE transcriptional unit III, was shown to be secreted into the external medium via the Hrp secretion pathway. DspB was predicted to be acidic, like the Syc chaperone of Yersinia. A chaperone role for DspB was suggested further by the fact that DspA secretion required a functional DspB protein.
To investigate the role of iron in Erwinia amylovora pathogenicity, virulence properties of two mutants of strain CFBP 1430 isolated by insertional mutagenesis and affected in the iron transport pathway mediated by desferrioxamine (DFO) were analyzed. One mutation (dfoA::MudIIpR13) disrupts DFO biosynthesis. The present analysis shows that this mutation affects an open reading frame that belongs to a biosynthetic gene cluster and shares identity with the alcA gene required for synthesis of the siderophore alcaligin in Bordetella spp. A second mutation (foxR::MudIIpR13) affects the synthesis of the ferrioxamine receptor FoxR, encoded by the foxR gene, and was shown to be transcribed into a monocistronic message. Accordingly, the foxR mutant accumulates DFO in the external medium. The growth of the mutants when supplied with various iron sources was examined; it indicates that the production of DFO and the specific transport of the DFO ferric complex are required only when iron is strongly liganded. Pathogenicity was scored after inoculation of apple seedlings and after infection of apple flowers. On seedlings, the DFO biosynthetic mutant behaved like the wild-type strain while the frequency of necrotic plants caused by the receptor mutant decreased by a factor of two to five, depending on the initial inoculum. On flowers, both mutants were strongly affected in their ability to initiate a necrotic symptom and their growth was reduced by two orders of magnitude relative to the wild-type strain. However, the virulence of the dfoA mutant varied with the inoculum concentration. Unlike the foxR mutant, the dfoA mutant only weakly induced plant cell electrolyte leakage in tobacco leaf disks. The supply with exogenous DFO, only when iron free, restored the ability to induce electrolyte leakage to the dfoA mutant and increased the leakage induced by other strains. DFO alone was not an inducer. Iron-free DFO was able to protect E. amylovora cells against lethal doses of hydrogen peroxide. The main conclusion was that production of DFO in E. amylovora during pathogenesis is not only a critical function for iron acquisition, but can play a role in the oxidative burst elicited by the bacteria.
Although fire blight, caused by the bacterium Erwinia amylovora, is one of the most destructive diseases of apple (Malus · domestica) worldwide, no major, qualitative gene for resistance to this disease has been identified to date in apple. We conducted a quantitative trait locus (QTL) analysis in two F 1 progenies derived from crosses between the cultivars Fiesta and either Discovery or Prima. Both progenies were inoculated in the greenhouse with the same strain of E. amylovora, and the length of necrosis was scored 7 days and 14 days after inoculation. Additive QTLs were identified using the MAPQTL software, and digenic epistatic interactions, which are an indication of putative epistatic QTLs, were detected by two-way analyses of variance. A major QTL explaining 34.3-46.6% of the phenotypic variation was identified on linkage group (LG) 7 of Fiesta in both progenies at the same genetic position. Four minor QTLs were also identified on LGs 3, 12 and 13. In addition, several significant digenic interactions were identified in both progenies. These results confirm the complex polygenic nature of resistance to fire blight in the progenies studied and also reveal the existence of a major QTL on LG7 that is stable in two distinct genetic backgrounds. This QTL could be a valuable target in marker-assisted selection to obtain new, fire blight-resistant apple cultivars and forms a starting point for discovering the function of the genes underlying such QTLs involved in fire blight control.
Erwinia amylovora is the causal agent of fire blight, a disease affecting members of subfamily Maloideae. In order to analyze mechanisms leading to compatible or incompatible interactions, early plant molecular events were investigated in two genotypes of Malus with contrasting susceptibility to fire blight, after confrontation with either E. amylovora or the incompatible tobacco pathogen Pseudomonas syringae pv. tabaci. Many defense mechanisms, including generation of an oxidative burst and accumulation of pathogenesis-related proteins, were elicited in both resistant and susceptible genotypes by the two pathogens at similar rates and according to an equivalent time course. This elicitation was linked with the functional hypersensitive reaction and pathogenicity (hrp) cluster of E. amylovora, because an hrp secretion mutant did not induce such responses. However, a delayed induction of several genes of various branch pathways of the phenylpropanoid metabolism was recorded in tissues of the susceptible genotype challenged with the wild-type strain of E. amylovora, whereas these genes were quickly induced in every other plant-bacteria interaction, including interactions with the hrp secretion mutant. This suggests the existence of hrp-independent elicitors of defense in the fire blight pathogen as well as hrp-dependant mechanisms of suppression of these nonspecific inductions.
Phage MudIIPR13 insertional mutagenesis of Erwinia amylovora CFBP1430 allowed us to isolate 6900 independent CmR mutants. The frequencies of different auxotrophs in this population indicated that MudIIPR13 had inserted randomly in E. amylovora. Screening of 3500 CmR mutants on (i) apple calli and (ii) pear and apple seedlings led to the isolation of 19 non-pathogenic prototrophic single mutants, four of which expressed a LacZ+ hybrid protein. Expression of the fusion proteins was temperature sensitive. The 19 mutants could be separated into two classes according to their behaviour on tobacco: 13 were unable to elicit the hypersensitive response on tobacco (Hrp-) while six still could (Dsp-). The 19 MudIIPR13 insertions all mapped in the same virulence region. The MudIIPR13 insertions of Hrp- mutants were all clustered on the left part of this region, while the MudIIPR13 insertions of Dsp- mutants were located on the right part. All of the mutants except one, which proved to have a large deletion of the entire virulence region, could be complemented functionally by cosmids from an E. amylovora CFBP1430 genomic library. No hybridization was observed between the cosmid pPV130, which complemented 12 hrp::MudIIPR13 mutations, and the hrp genes from Pseudomonas syringae pv. phaseolicola (Lindgren et al., 1986), P. syringae pv. tomato (N.J. Panopoulos, unpublished data) or P. solanacearum (Boucher et al., 1987). Further analysis of the large virulence region will allow mapping of the border of the virulence region and facilitate the study of the function and regulation of the hrp and dsp genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.