Photorhabdus luminescens is an enterobacterium that is symbiotic with soil entomopathogenic nematodes and pathogenic to a wide range of insects. P. luminescens promotes its own transmission among susceptible insect populations using its nematode host as vector 1 . Its life cycle comprises a symbiotic stage in the nematode's gut and a virulent stage in the insect larvae, which it kills through toxemia and septicemia. After the nematode attacks a prey insect and P. luminescens is released, the bacterium produces a wide variety of virulence factors ensuring rapid insect killing. Bioconversion of the insect cadaver by exoenzymes produced by the bacteria allows the bacteria to multiply and the nematode to reproduce. During this process P. luminescens produces antibiotics to prevent invasion of the insect cadaver by bacterial or fungal competitors. Finally, elimination of competitors allows P. luminescens and the nematode to reassociate specifically before leaving the insect cadaver 2,3 .To better understand this complex life style, we determined the genome sequence of P. luminescens subspecies laumondii strain TT01 4 , a symbiont of the nematode Heterorhabditis bacteriophora isolated on Trinidad and Tobago. RESULTS General featuresStrain TT01 possesses a single circular chromosome of 5,688,987 bp with an average GC content of 42.8%. No plasmid replicon was found.A total of 4,839 protein-coding genes, including 157 pseudogenes, seven complete sets (23S, 5S and 16S) of ribosomal RNA operons and 85 tRNA genes, were predicted ( Fig. 1; Supplementary Table 1 online). Toxins against insectsMore toxin genes were predicted in the P. luminescens genome than in any other bacterial genome sequenced yet. A large number of these toxins may be involved in the killing of a wide variety of insects. Some may act synergistically or use redundancy for 'overkill' 5 , ensuring a quick death of the host. In addition, some may kill insects by interfering with their development. In the TT01 genome, two paralogs, plu4092 and plu4436, encode proteins similar to juvenile hormone esterases (JHEs) of the insect Leptinotarsa decemlineata 6 . Juvenile hormone maintains the insect in a larval state. Its inactivation by JHE allows metamorphosis to proceed. JHEs may be used to trigger the insect endocrine machinery at an inappropriate time and thus represents a promising approach for insect control 7 . These genes are located downstream of highly related orphan genes (plu4093 and plu4437), suggesting a locus duplication.The toxicity of the proteins encoded by these two loci was verified experimentally. Two Escherichia coli clones, containing the recombinant BAC1A02 and BAC8C11, were shown to be toxic toward insects. BAC1A02, which contains the locus plu4093-plu4092, exhibited substantial oral toxicity toward three mosquito species, Aedes aegypti,
SummaryIn Erwinia amylovora, the dsp region, required for pathogenicity on the host plant but not for hypersensitive elicitation on tobacco, is separated from the hrp region by 4 kb. The genetic analysis reported in this paper showed that this 4 kb region is not required for pathogenicity on pear seedlings. The environmental conditions allowing expression of a dsp ::lacZ fusion were examined: expression was barely detected in rich medium at 30ЊC, and the highest expression was observed in M9 galactose minimal medium at 25ЊC. A dsp ::uidA fusion appeared to be expressed only in a HrpL-proficient strain, indicating that the dsp region, like the hrp region, is positively controlled via the alternative factor HrpL. Sequence analysis revealed that the dsp cluster encodes two genes, dspA (5517 bp) and dspB (420 bp), and that the insertions leading to the dsp ::lacZ and the dsp ::uidA fusions were within dspA. A HrpL-dependent promoter sequence (GGAACC-N 15 -CAACA) was identified upstream of dspA, and primer extension analysis detected four transcriptional starts 7, 8, 9 and 10 bp downstream of this sequence. A 70 promoter sequence (TTGCCC-N 16 -GATAAT) was observed upstream of dspB. The functionality of this second promoter was confirmed by complementation analysis. This promoter allowed constitutive expression of dspB, as measured by the expression of a dspB ::uidA fusion in rich medium. In M9 galactose medium, however, HrpL was shown to activate dspB, as expression of the dspB ::uidA fusion was twofold higher in a HrpL þ background than in a HrpL ¹ background. Transposon insertions in either dspA or dspB led to a non-pathogenic phenotype. Thus, both DspA and DspB were required for E. amylovora pathogenicity, as dspB could be expressed independently of dspA. DspA and DspB were visualized as polypeptides with apparent sizes of 190 kDa and 15.5 kDa, respectively, when encoded in the T7 polymerase/promoter system. DspA, which showed homology with the protein predicted from the partial sequence of Pseudomonas syringae pv. tomato avrE transcriptional unit III, was shown to be secreted into the external medium via the Hrp secretion pathway. DspB was predicted to be acidic, like the Syc chaperone of Yersinia. A chaperone role for DspB was suggested further by the fact that DspA secretion required a functional DspB protein.
Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.