Background and Aims Understanding how plant allometry, plant architecture and phenology contribute to fruit production can identify those plant traits that maximize fruit yield. In this study, we compared these variables and fruit yield for two shrub species, Vaccinium angustifolium and Vaccinium myrtilloides, to test the hypothesis that phenology is linked to the plants’ allometric traits, which are predictors of fruit production. Methods We measured leaf and flower phenology and the above-ground biomass of both Vaccinium species in a commercial wild lowbush blueberry field (Quebec, Canada) over a 2-year crop cycle; 1 year of pruning followed by 1 year of harvest. Leaf and flower phenology were measured, and the allometric traits of shoots and buds were monitored over the crop cycle. We hand-collected the fruits of each plant to determine fruit attributes and biomass. Key Results During the harvesting year, the leafing and flowering of V. angustifolium occurred earlier than that of V. myrtilloides. This difference was related to the allometric characteristics of the buds due to differences in carbon partitioning by the plants during the pruning year. Through structural equation modelling, we identified that the earlier leafing in V. angustifolium was related to a lower leaf bud number, while earlier flowering was linked to a lower number of flowers per bud. Despite differences in reproductive allometric traits, vegetative biomass still determined reproductive biomass in a log–log scale model. Conclusions Growing buds are competing sinks for non-structural carbohydrates. Their differences in both number and characteristics (e.g. number of flowers per bud) influence levels of fruit production and explain some of the phenological differences observed between the two Vaccinium species. For similar above-ground biomass, both Vaccinium species had similar reproductive outputs in terms of fruit biomass, despite differences in reproductive traits such as fruit size and number.
Optimizing agricultural practices is an effective way to increase fruit productivity in commercial wild lowbush blueberry (Vaccinium angustifolium Aiton; Vaccinium myrtilloides Michx) fields, but results from northern Quebec (Canada) are scarce. In this study, we assessed the effect of the main crop management practices, namely pruning method (mechanical and thermal), fungicide (with and without), and fertilization (mineral, organic, without) on key vegetative and reproductive plant traits of both wild blueberry species. The experiment was conducted from fall 2016 to fall 2018, when the combination of pruning, fungicide and fertilizing was applied. Results show that fertilizer applications was the main management practice affecting vegetative and reproductive plant traits followed by fungicide application effects during pruning years only. Mineral fertilizer improved plant traits to a greater extent than organic fertilizer during the pruning phase only, and no significant differences the second year after application (harvesting phase) suggests a delayed but similar final effect of organic fertilizer. Results also showed that V. myrtilloides produces taller stems with more leaves compared to V. angustifolium, whereas V. angustifolium produces more flower buds, a key reproductive plant trait. Results also highlight the fact that V. angustifolium needs both fertilizer and fungicide in order to keep leaves on the stem during late summer, whereas V. myrtilloides needs either fertilizers or fungicide. This study also shows that pruning method has no significant effect on any of the measured plant traits. However, we believe that long-term studies are still needed to assess the impact of pruning method over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.