Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease.Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ϳ80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body. Molecular & Cellular Proteomics 13: 10.1074/mcp.M113.035600, 397-406, 2014.Central questions in human biology relate to how cells, tissues, and organs differ in the expression of genes and proteins and what consequences the global expression pattern has for the phenotype of various cells with different functions in the body. Therefore, the annotation of the human protein-coding genes with regards to the spatial, temporal, and functional space represents one of the greatest challenges in human biology (1). Important questions related to this are how many of the genes actually code for functional proteins, how many are expressed in a tissue-specific manner, and how many proteins have "housekeeping" functions and are therefore expressed in all cells? These questions have a major impact not only on efforts to try to understand human biology, but also for applied medical research, such as pharmaceutical drug development and biomarker discovery in the field of translational medicine.Several efforts have been initiated in the aftermath of the genome project to systematically annotate the putative protein-coding part of the human genome. Genome annotation efforts, such as Ensembl (2) and RefSeq (3), have provided an increasingly accurate map with at present ϳ20,000 proteincoding genes. Similarly, the ENCODE consortium has been launched to provide an integrated encyclopedia of DNA eleFrom the ‡Science for Life Laboratory, KTH -Royal Institute of Technology, SE-171 21 Stockholm, Sweden; §Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden; ¶Department
Resolving the spatial distribution of the human proteome at a subcellular level can greatly increase our understanding of human biology and disease. Here we present a comprehensive image-based map of subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of the proteomes of 13 major organelles. Exploration of the proteomes revealed single-cell variations in abundance or spatial distribution and localization of about half of the proteins to multiple compartments. This subcellular map can be used to refine existing protein-protein interaction networks and provides an important resource to deconvolute the highly complex architecture of the human cell.
Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate key signalling events. Despite recent advances, the molecular basis for the plethora of processes coordinated by centrosomes is not fully understood. We have combined protein identification and localization, using PCP-SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes. From a background of non-specific proteins, we distinguished 126 known and 40 candidate centrosomal proteins, of which 22 were confirmed as novel components. An antibody screen covering 4000 genes revealed an additional 113 candidates. We illustrate the power of our methods by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads to the further functional characterization of centrosomal proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.