SummaryThe natural habitats and potential reservoirs of the nosocomial pathogen Acinetobacter baumannii are poorly defined. Here, we put forth and tested the hypothesis of avian reservoirs of A. baumannii. We screened tracheal and rectal swab samples from livestock (chicken, geese) and wild birds (white stork nestlings) and isolated A. baumannii from 3% of sampled chicken (n 5 220), 8% of geese (n 5 40) and 25% of white stork nestlings (n 5 661). Virulence of selected avian A. baumannii isolates was comparable to that of clinical isolates in the Galleria mellonella infection model. Whole genome sequencing revealed the close relationship of an antibiotic-susceptible chicken isolate from Germany with a multidrug-resistant human clinical isolate from China and additional linkages between livestock isolates and human clinical isolates related to international clonal lineages. Moreover, we identified stork isolates related to human clinical isolates from the United States. Multilocus sequence typing disclosed further kinship between avian and human isolates. Avian isolates do not form a distinct clade within the phylogeny of A. baumannii, instead they diverge into different lineages. Further, we provide evidence that A. baumannii is constantly present in the habitats occupied by storks. Collectively, our study suggests A. baumannii could be a zoonotic organism that may disseminate into livestock.
Two yellow-pigmented bacterial strains (100T and C26T), showing 98.4 % 16S rRNA gene sequence similarity to each other and isolated from a chicken in Germany and as a contaminant from an agar plate of a rhizosphere sample in Alabama, were studied by using a polyphasic taxonomic approach. Cells of both isolates were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequences of the two organisms with the sequences of the type strains of the most closely related species of the genus Chryseobacterium showed the highest sequence similarities of strains 100T and C26T to the type strains of Chryseobacterium joostei (respectively 97.5 and 98.2 %), C. viscerum (96.6, 97.8 %), C. gleum (97.1, 97.7 %), C. arthrosphaerae (97.3%, 97.7 %), C. indologenes (97.2, 97.7 %), C. tructae (96.6, 97.6 %), C. jejuense (97.0, 97.6 %) and C. oncorhynchi (96.3, 97.5 %); 16S rRNA gene sequence similarities to members of all other species of the genus Chryseobacterium were below 97.5 %. The fatty acid profiles of both strains consisted of the major fatty acids iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C17 : 1ω9c and iso-C17 : 0 3-OH, but also showed slight differences (absence or presence of C16 : 0 3-OH and iso-C15 : 1 F). DNA–DNA hybridizations between the two strains and between the novel strains and the type strains of C. joostei , C. indologenes , C. jejuense , C. tructae and C. viscerum resulted in relatedness values clearly below 70 %. These DNA–DNA hybridization results and the differentiating biochemical and chemotaxonomic properties showed that both strains 100T and C26T represent novel species, for which the names Chryseobacterium gallinarum sp. nov. (type strain 100T = LMG 27808T = CCM 8493T) and Chryseobacterium contaminans sp. nov. (type strain C26T = LMG 27810T = CCM 8492T) are proposed.
The taxonomic position of five strains isolated from horse faeces, and which shared identical 16S rRNA gene sequences, were studied. Cells of all isolates are Gram-stain-negative, obligately aerobic and have a rod-shaped appearance. The strains show highest 16S rRNA gene sequence similarities to Acinetobacter lwoffii (98.3 %), Acinetobacter haemolyticus (98.0 %), Acienetobacter johnsonii (97.9 %) and Acinetobacter brisouii (97.9 %). Whole-genome sequencing of strain 114 T and phylogeny reconstruction based on a core set of 1061 Acinetobacter genes indicated that A. bouvetii CIP 107468 T was the closest relative among species of the genus Acinetobacter for which whole genome sequences are available. The genomic DNA G+C content of strain 114 T is 34.9 mol%, which is lower than any other value reported for the genus Acinetobacter. The predominant polyamine is 1,3-diaminopropane, which is typical for the genus Acinetobacter. The most abundant fatty acids are C 16 : 1 v7c and/or iso-C 15 : 0 2-OH (36 %) and C 16 : 0 (28 %). The proportion of C 18 : 1 v9c (7 %) is distinctively low compared to most species of the genus. The major ubiquinone of strain 114 T is Q-9. Microscopic studies revealed the presence of pili and the absence of flagella. The capability of all five strains to utilize L-arabinose and gentisate as well as their lack of growth at temperatures of 41 8C and above provide sufficient criteria to distinguish the isolates from all species of the genus Acinetobacter with validly published names. Based on these combined data, the five isolates represent a novel species of the genus Acinetobacter, for which the name Acinetobacter equi sp. nov. is proposed. The type strain is 114 T (5DSM 27228 T 5CCUG 65204 T ).
A Gram-stain-negative, rod-shaped, oxidase-positive, non-spore-forming, non-motile bacterium (strain 280 T ) isolated from a chicken was studied for its taxonomic allocation. 16S rRNA gene sequence analyses clearly allocated the isolate in the genus Paenochrobactrum group with a 16S rRNA gene sequence similarity of 98.8 % to the currently recognized species, Paenochrobactrum gallinarii and Paenochrobactrum glaciei. This allocation was confirmed by the fatty acid data (major fatty acids: C 18 : 1 v7c and C 19 : 0 cyclo v8c) and a polyamine pattern with the major compound putrescine and relatively high amounts of spermidine. Also, the polar lipid profile with phosphatidylethanolamine, phosphatiylmonomethylethanolamine, phosphatidylglycerol, phosphatidylcholine and the genus-specific 'stretched aminolipid' was well in line with the description of the genus Paenochrobactrum. The quinone system consisted predominantly of ubiquinone Q-10 with traces of Q-9 and Q-11. DNA-DNA hybridization of strain 280 T with Paenochrobactrum
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.