In chemistry, biology, medical sciences and pharmaceutical industries, many reactions have to be checked by transporting and mixing expensive liquids. For such purposes, microfluidics systems consisting of closed channels with external pumps have been useful. However, the usage has been limited because of high fabrication cost and need for a fixed setup. Here, we show that open-capillary channels, which can be fabricated outside a clean room on durable substrates and are washable and reusable, are considerably promising for micro-devices that function without pumps, as a result of detailed studies on the imbibition of open micro-channels. We find that the statics and dynamics of the imbibition follow simple scaling laws in a wide and practical range; although a precursor film obeying a universal dynamics appears in the vertical imbibition, it disappears in the horizontal mode to make the design of complex micro-channel geometry feasible. We fabricate micro open-channel devices without any pumps to express the green florescent protein (GFP) by transporting highly viscous solutions and to accomplish simultaneous chemical reactions for the Bromothymol blue (BTB) solution. We envision that open-capillary devices will become a simple and low-cost option to achieve microfluidic devices that are usable in small clinics and field studies.
The wharf roach Ligia exotica is a small animal that lives by the sea and absorbs water from the sea through its legs by virtue of a remarkable array of small blades of micron scale. We find that the imbibition dynamics on the legs is rather complex on a microscopic scale, but on a macroscopic scale the imbibition length seems to simply scale linearly with elapsed time. This unusual dynamics of imbibition, which usually slows down with time, is advantageous for long-distance water transport and results from repetition of unit dynamics. Inspired by the remarkable features, we study artificially textured surfaces mimicking the structure on the legs of the animal. Unlike the case of the wharf roach, the linear dynamics were not reproduced on the artificial surfaces, which may result from more subtle features on the real legs that are not faithfully reflected on the artificial surfaces. Instead, the nonlinear dynamics revealed that hybrid structures on the artificial surfaces speed up the water transport compared with non-hybrid ones. In addition, the dynamics on the artificial surfaces turn out to be well described by a composite theory developed here, with the theory giving useful guiding principles for designing hybrid textured surfaces for rapid imbibition and elucidating physical advantages of the microscopic design on the legs.
Collapse of liquid films in a foam is characteristic compared to that of individual films. The mechanism and physical conditions of collective bubble collapse which directly contribute to foam stability have been clarified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.