Several endogenous viral elements (EVEs) have been identified in plant genomes, including endogenous pararetroviruses (EPRVs). Here, we report the first characterization of EPRV sequences in the genome of African yam of the Dioscorea cayenensis-rotundata complex. We propose that these sequences should be termed 'endogenous Dioscorea bacilliform viruses' (eDBVs). Molecular characterization of eDBVs shows that they constitute sequences originating from various parts of badnavirus genomes, resulting in a mosaic structure that is typical of most EPRVs characterized to date. Using complementary molecular approaches, we show that eDBVs belong to at least four distinct Badnavirus species, indicating multiple, independent, endogenization events. Phylogenetic analyses of eDBVs support and enrich the current taxonomy of yam badnaviruses and lead to the characterization of a new Badnavirus species in yam. The impact of eDBVs on diagnosis, yam germplasm conservation and movement, and breeding is discussed.
Yam (Dioscorea spp.) is an important crop in tropical and subtropical regions. Many viruses have been recently identified in yam, hampering genetic conservation and safe international exchanges of yam germplasm. We report on the implementation of reliable and cost-effective PCR-based detection tools targeting eight different yam-infecting viruses. Viral indexing of the in vitro yam collection maintained by the Biological Resources Center for Tropical Plants (BRC-TP) in Guadeloupe (French West Indies) unveiled a high prevalence of potyviruses, badnaviruses, Dioscorea mosaic associated virus (DMaV) and yam asymptomatic virus 1 (YaV1) and a high level of coinfections. Infected yam accessions were subjected to a combination of thermotherapy and meristem culture. Sanitation levels were monitored using PCR-based and high-throughput sequencing-based diagnosis, confirming the efficacy and reliability of PCR-based detection tools. Sanitation rates were highly variable depending on viruses. Sixteen accessions were successfully sanitized, paving the way to safe yam germplasm exchanges and the implementation of clean seed production programs worldwide.
Caulimoviridae is a family of non-enveloped reverse-transcribing plant viruses with non-covalently closed circular dsDNA genomes of 7.1–9.8 kbp in the order Ortervirales. They infect a wide range of monocots and dicots. Some viruses cause economically important diseases of tropical and subtropical crops. Transmission occurs through insect vectors (aphids, mealybugs, leafhoppers, lace bugs) and grafting. Activation of infectious endogenous viral elements occurs in Musa balbisiana, Petunia hybrida and Nicotiana edwardsonii. However, most endogenous caulimovirids are not infectious. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caulimoviridae, which is available at ictv.global/report/caulimoviridae.
The complete genome sequence of Dioscorea bacilliform TR virus (DBTRV) was determined. The closest relatives of DBTRV are Dioscorea bacilliform AL virus (DBALV) and Dioscorea bacilliform RT virus 1 (DBRTV1). Specific primers were designed and used to determine the prevalence of DBTRV in a yam germplasm collection. It was found that this virus infects Dioscorea alata and D. trifida plants in Guadeloupe and French Guyana. DTRBV was not detected in any of the tested D. cayenensis-rotundata accessions. In silico analysis provided evidence for the presence of DBTRV-like endogenous sequences in the genome of D. cayenensis-rotundata, pointing to a possible role of these sequences in antiviral defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.