To identify new components that regulate the inflammatory cascade during sepsis, we characterized the functions of myeloid-related protein-8 (Mrp8, S100A8) and myeloid-related protein-14 (Mrp14, S100A9), two abundant cytoplasmic proteins of phagocytes. We now demonstrate that mice lacking Mrp8-Mrp14 complexes are protected from endotoxin-induced lethal shock and Escherichia coli-induced abdominal sepsis. Both proteins are released during activation of phagocytes, and Mrp8-Mrp14 complexes amplify the endotoxin-triggered inflammatory responses of phagocytes. Mrp8 is the active component that induces intracellular translocation of myeloid differentiation primary response protein 88 and activation of interleukin-1 receptor-associated kinase-1 and nuclear factor-kappaB, resulting in elevated expression of tumor necrosis factor-alpha (TNF-alpha). Using phagocytes expressing a nonfunctional Toll-like receptor 4 (TLR4), HEK293 cells transfected with TLR4, CD14 and MD2, and by surface plasmon resonance studies in vitro, we demonstrate that Mrp8 specifically interacts with the TLR4-MD2 complex, thus representing an endogenous ligand of TLR4. Therefore Mrp8-Mrp14 complexes are new inflammatory components that amplify phagocyte activation during sepsis upstream of TNFalpha-dependent effects.
Extracellular high-mobility group box (HMGB)1 mediates inflammation during sterile and infectious injury and contributes importantly to disease pathogenesis. The first critical step in the release of HMGB1 from activated immune cells is mobilization from the nucleus to the cytoplasm, a process dependent upon hyperacetylation within two HMGB1 nuclear localization sequence (NLS) sites. The inflammasomes mediate the release of cytoplasmic HMGB1 in activated immune cells, but the mechanism of HMGB1 translocation from nucleus to cytoplasm was previously unknown. Here, we show that pharmacological inhibition of JAK/STAT1 inhibits LPS-induced HMGB1 nuclear translocation. Conversely, activation of JAK/STAT1 by type 1 interferon (IFN) stimulation induces HMGB1 translocation from nucleus to cytoplasm. Mass spectrometric analysis unequivocally revealed that pharmacological inhibition of the JAK/STAT1 pathway or genetic deletion of STAT1 abrogated LPS-or type 1 IFN-induced HMGB1 acetylation within the NLS sites. Together, these results identify a critical role of the JAK/STAT1 pathway in mediating HMGB1 cytoplasmic accumulation for subsequent release, suggesting that the JAK/STAT1 pathway is a potential drug target for inhibiting HMGB1 release.damage-associated molecular pattern | cytokine | pathogen-associated molecular pattern | innate immunity | therapy H igh-mobility group box 1 (HMGB1), a ubiquitous DNAbinding protein, is a promiscuous sensor driving nucleic acidmediated immune responses and a pathogenic inflammatory mediator in sepsis, arthritis, colitis, and other disease syndromes (1-5). Immune cells actively release HMGB1 after activation by exposure to pathogen-associated molecular patterns or damageassociated molecular patterns, including lipopolysaccharide (LPS) and inflammasome agonists (1, 6, 7). High levels of extracellular HMGB1 accumulate in patients with infectious and sterile inflammatory diseases. Extracellular disulfide HMGB1 stimulates macrophages to release TNF and other inflammatory mediators by binding and signaling through Toll-like receptor (TLR)4. Reduced HMGB1 facilitates immune cell migration by interacting with the receptor for advanced glycation end products (RAGE) and CXCL12 (8-12), a process regulated by posttranslational redox-dependent mechanisms. Administration of neutralizing anti-HMGB1 mAbs or other HMGB1 antagonists significantly reduces the severity of inflammatory disease, promotes bacterial clearance during Pseudomonas aeruginosa or Salmonella typhimurium infection and attenuates memory impairment in sepsis survivors (1,(13)(14)(15). Together, these and other findings indicate the importance of a mechanistic understanding of HMGB1 release from activated immune cells and the regulatory signaling pathways controlling these processes.Most cytokines harbor a leader peptide that facilitates secretion through the endoplasmic reticulum-Golgi exocytotic route. HMGB1, which lacks a leader peptide, is released via unconventional protein secretion pathways (1, 6, 7). In quiescent cells, most ...
High-mobility group box 1 (HMGB-1) has been reported as a “late” proinflammatory mediator in sepsis. In vitro data have shown that HMGB-1 can induce activation of intracellular signaling pathways via interaction with at least three pattern recognition receptors: Toll-like receptor (TLR) 2, TLR-4, and the receptor for advanced glycation end products (RAGE). The objective of this study was to investigate the role of these receptors in the in vivo response to HMGB-1. Therefore, we first performed a time-series experiment with wild-type (Wt) mice. High-mobility group box 1 induced time-dependent elevations of TNF-α, IL-6, monocyte chemoattractant protein 1, and thrombin-antithrombin complex levels in peritoneal lavage fluid and plasma. This inflammatory reaction was accompanied by a prominent and sustained rise in neutrophil counts in the peritoneal cavity. We next administered HMGB-1 to Wt, TLR-2−/−, TLR-4−/−, and RAGE−/− mice. All genotypes showed similar plasma levels of TNF-α, IL-6, IL-10, and thrombin-antithrombin complex at 2 h after intraperitoneal injection of HMGB-1. Compared with Wt mice, both TLR-4−/− and RAGE−/− mice displayed lower TNF-α and IL-6 concentrations and lower neutrophil numbers in their peritoneal lavage fluid. In contrast, TLR-2−/− mice showed increased levels of TNF-α and IL-6 in their peritoneal cavity relative to Wt mice. These data indicate that HMGB-1 induces release of cytokines, activation of coagulation, and neutrophil recruitment in vivo via a mechanism that at least in part depends on TLR-4 and RAGE.
Klebsiella (K.) pneumoniae is a common cause of pneumonia-derived sepsis. Myeloid related protein 8 (MRP8, S100A8) and MRP14 (S100A9) are the most abundant cytoplasmic proteins in neutrophils. They can form MRP8/14 heterodimers that are released upon cell stress stimuli. MRP8/14 reportedly exerts antimicrobial activity, but in acute fulminant sepsis models MRP8/14 has been found to contribute to organ damage and death. We here determined the role of MRP8/14 in K. pneumoniae sepsis originating from the lungs, using an established model characterized by gradual growth of bacteria with subsequent dissemination. Infection resulted in gradually increasing MRP8/14 levels in lungs and plasma. Mrp14 deficient (mrp14−/−) mice, unable to form MRP8/14 heterodimers, showed enhanced bacterial dissemination accompanied by increased organ damage and a reduced survival. Mrp14−/− macrophages were reduced in their capacity to phagocytose Klebsiella. In addition, recombinant MRP8/14 heterodimers, but not MRP8 or MRP14 alone, prevented growth of Klebsiella in vitro through chelation of divalent cations. Neutrophil extracellular traps (NETs) prepared from wildtype but not from mrp14−/− neutrophils inhibited Klebsiella growth; in accordance, the capacity of human NETs to kill Klebsiella was strongly impaired by an anti-MRP14 antibody or the addition of zinc. These results identify MRP8/14 as key player in protective innate immunity during Klebsiella pneumonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.