We introduce quanTIseq, a method to quantify the fractions of ten immune cell types from bulk RNA-sequencing data. quanTIseq was extensively validated in blood and tumor samples using simulated, flow cytometry, and immunohistochemistry data. quanTIseq analysis of 8000 tumor samples revealed that cytotoxic T cell infiltration is more strongly associated with the activation of the CXCR3/CXCL9 axis than with mutational load and that deconvolution-based cell scores have prognostic value in several solid cancers. Finally, we used quanTIseq to show how kinase inhibitors modulate the immune contexture and to reveal immune-cell types that underlie differential patients’ responses to checkpoint blockers. Availability: quanTIseq is available at http://icbi.at/quantiseq . Electronic supplementary material The online version of this article (10.1186/s13073-019-0638-6) contains supplementary material, which is available to authorized users.
We introduce quanTIseq, a method to quantify the tumor immune contexture, determined by the type and density of tumor-infiltrating immune cells. quanTIseq is based on a novel deconvolution algorithm for RNA sequencing data that was validated with independent data sets. Complementing the deconvolution output with image data from tissue slides enables in silico multiplexed immunodetection and provides an efficient method for the immunophenotyping of a large number of tumor samples.Cancer immunotherapy with antibodies targeting immune checkpoints has shown durable benefit or even curative potential in various cancers 1,2 . As only a fraction of patients are responsive to immune checkpoint blockers, efforts are underway to identify predictive markers as well as mechanistic rationale for combination therapies with synergistic potential. Thus, comprehensive and quantitative immunological characterization of tumors in a large number of clinical samples is of utmost importance, but it is currently hampered by the lack of simple and efficient methods. Therefore, we developed quanTIseq, a computational pipeline for the quantification of the Tumor Immune contexture using RNA-seq data and images of haematoxylin and eosin (H&E)-stained tissue slides (Fig. 1a). As part of quanTIseq, we first developed a deconvolution algorithm based on constrained least squares regression 12 . We then designed a signature matrix from a compendium of 51 RNA-seq data sets (Supplementary (Fig. 1c).To validate quanTIseq we first used both simulated data and published data. We simulated 1,700RNA-seq data sets from human breast tumors by mixing various numbers of reads from tumor and immune-cell RNA-seq data, considering different immune compositions and sequencing depths.quanTIseq obtained a high correlation between the true and the estimated fractions and accurately quantified tumor content (measured by the fraction of "other" cells) (Supplementary Figure 1). We then validated quanTIseq using experimental data from a previous study 13 , in which peripheral blood mononuclear cell (PBMC) mixtures were subjected to both, RNA-seq and flow cytometry. A high accuracy of quanTIseq estimates was also observed with this data set ( Fig. 1d and Supplementary Figure 2). Additionally, we successfully validated quanTIseq using two previous published data sets (Supplementary Figures 3 and 4).As most of the validation data sets available in the literature are based on microarray data or consider a limited number of phenotypes, we generated RNA-seq and flow cytometry data from mixtures of peripheral-blood immune cells collected from nine healthy donors. Flow cytometry was used to quantify all the immune sub-populations considered by quanTIseq signature matrix except macrophages, which are not present in blood. Comparison between quanTIseq cell estimates and flow cytometry fractions showed a high correlation at a single and multiple cell-type level ( Fig. 1e and Supplementary Figure 5).We then validated quanTIseq using two independent data sets. The first data...
Multiplex immunophenotyping technologies are indispensable for a deeper understanding of biological systems. Until recently, high-dimensional cellular analyses implied the loss of tissue context as they were mostly performed in single-cell suspensions. The advent of imaging mass cytometry introduced the possibility to simultaneously detect a multitude of cellular markers in tissue sections. This technique can be applied to various tissue sources including snap-frozen and formalin-fixed, paraffin-embedded (FFPE) tissues. However, a number of methodological challenges must be overcome when developing large antibody panels in order to preserve signal intensity and specificity of antigen detection. We report the development of a 40-marker panel for imaging mass cytometry on FFPE tissues with a particular focus on the study of cancer immune microenvironments. It comprises a variety of immune cell markers including lineage and activation markers as well as surrogates of cancer cell states and tissue-specific markers (e.g., stroma, epithelium, vessels) for cellular contextualization within the tissue. Importantly, we developed an optimized workflow for maximum antibody performance by separating antibodies into two distinct incubation steps, at different temperatures and incubation times, shown to significantly improve immunodetection. Furthermore, we provide insight into the antibody validation process and discuss why some antibodies and/or cellular markers are not compatible with the technique. This work is aimed at supporting the implementation of imaging mass cytometry in other laboratories by describing methodological procedures in detail. Furthermore, the panel described here is an excellent immune monitoring tool that can be readily applied in the context of cancer research.
ObjectiveA comprehensive understanding of anticancer immune responses is paramount for the optimal application and development of cancer immunotherapies. We unravelled local and systemic immune profiles in patients with colorectal cancer (CRC) by high-dimensional analysis to provide an unbiased characterisation of the immune contexture of CRC.DesignThirty-six immune cell markers were simultaneously assessed at the single-cell level by mass cytometry in 35 CRC tissues, 26 tumour-associated lymph nodes, 17 colorectal healthy mucosa and 19 peripheral blood samples from 31 patients with CRC. Additionally, functional, transcriptional and spatial analyses of tumour-infiltrating lymphocytes were performed by flow cytometry, single-cell RNA-sequencing and multispectral immunofluorescence.ResultsWe discovered that a previously unappreciated innate lymphocyte population (Lin–CD7+CD127–CD56+CD45RO+) was enriched in CRC tissues and displayed cytotoxic activity. This subset demonstrated a tissue-resident (CD103+CD69+) phenotype and was most abundant in immunogenic mismatch repair (MMR)-deficient CRCs. Their presence in tumours was correlated with the infiltration of tumour-resident cytotoxic, helper and γδ T cells with highly similar activated (HLA-DR+CD38+PD-1+) phenotypes. Remarkably, activated γδ T cells were almost exclusively found in MMR-deficient cancers. Non-activated counterparts of tumour-resident cytotoxic and γδ T cells were present in CRC and healthy mucosa tissues, but not in lymph nodes, with the exception of tumour-positive lymph nodes.ConclusionThis work provides a blueprint for the understanding of the heterogeneous and intricate immune landscape of CRC, including the identification of previously unappreciated immune cell subsets. The concomitant presence of tumour-resident innate and adaptive immune cell populations suggests a multitargeted exploitation of their antitumour properties in a therapeutic setting.
Brain iron accumulation has been found to accelerate disease progression in amyloid-β(Aβ) positive Alzheimer patients, though the mechanism is still unknown. Microglia have been identified as key players in the disease pathogenesis, and are highly reactive cells responding to aberrations such as increased iron levels. Therefore, using histological methods, multispectral immunofluorescence and an automated in-house developed microglia segmentation and analysis pipeline, we studied the occurrence of iron-accumulating microglia and the effect on its activation state in human Alzheimer brains. We identified a subset of microglia with increased expression of the iron storage protein ferritin light chain (FTL), together with increased Iba1 expression, decreased TMEM119 and P2RY12 expression. This activated microglia subset represented iron-accumulating microglia and appeared morphologically dystrophic. Multispectral immunofluorescence allowed for spatial analysis of FTL+Iba1+-microglia, which were found to be the predominant Aβ-plaque infiltrating microglia. Finally, an increase of FTL+Iba1+-microglia was seen in patients with high Aβ load and Tau load. These findings suggest iron to be taken up by microglia and to influence the functional phenotype of these cells, especially in conjunction with Aβ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.