Event-distributions inform scientists about the variability and dispersion of repeated measurements. This dispersion can be understood from a complex systems perspective, and quantified in terms of fractal geometry. The key premise is that a distribution's shape reveals information about the governing dynamics of the system that gave rise to the distribution. Two categories of characteristic dynamics are distinguished: additive systems governed by component-dominant dynamics and multiplicative or interdependent systems governed by interaction-dominant dynamics. A logic by which systems governed by interaction-dominant dynamics are expected to yield mixtures of lognormal and inverse power-law samples is discussed. These mixtures are described by a so-called cocktail model of response times derived from human cognitive performances. The overarching goals of this article are twofold: First, to offer readers an introduction to this theoretical perspective and second, to offer an overview of the related statistical methods.
Background Many adolescents in special education are affected by anxiety in addition to their behavioral problems. Anxiety leads to substantial long-term problems and may underlie disruptive behaviors in the classroom as a result of the individual’s inability to tolerate anxiety-provoking situations. Thus, interventions in special needs schools that help adolescents cope with anxiety and, in turn, diminish disruptive classroom behaviors are needed. Objective This study aimed to evaluate the effect of a virtual reality biofeedback game, DEEP, on daily levels of state-anxiety and disruptive classroom behavior in a clinical sample. In addition, the study also aimed to examine the duration of the calm or relaxed state after playing DEEP. Methods A total of 8 adolescents attending a special secondary school for students with behavioral and psychiatric problems participated in a single-case experimental ABAB study. Over a 4-week period, participants completed 6 DEEP sessions. In addition, momentary assessments (ie, 3 times a day) of self-reported state-anxiety and teacher-reported classroom behavior were collected throughout all A and B phases. Results From analyzing the individual profiles, it was found that 6 participants showed reductions in anxiety, and 5 participants showed reductions in disruptive classroom behaviors after the introduction of DEEP. On a group level, results showed a small but significant reduction of anxiety (d=–0.29) and a small, nonsignificant reduction of disruptive classroom behavior (d=−0.16) on days when participants played DEEP. Moreover, it was found that the calm or relaxed state of participants after playing DEEP lasted for about 2 hours on average. Conclusions This study demonstrates the potential of the game, DEEP, as an intervention for anxiety and disruptive classroom behavior in a special school setting. Future research is needed to fully optimize and personalize DEEP as an intervention for the heterogeneous special school population.
As part of the Dutch national science program “Professional Games for Professional Skills” we developed a stress-exposure biofeedback training in virtual reality (VR) for the Dutch police. We aim to reduce the acute negative impact of stress on performance, as well as long-term consequences for mental health by facilitating physiological stress regulation during a demanding decision task. Conventional biofeedback applications mainly train physiological regulation at rest. This might limit the transfer of the regulation skills to stressful situations. In contrast, we provide the user with the opportunity to practice breathing regulation while they carry out a complex task in VR. This setting poses challenges from a technical – (real-time processing of noisy biosignals) as well as from a user-experience perspective (multi-tasking). We illustrate how we approach these challenges in our training and hope to contribute a useful reference for researchers and developers in academia or industry who are interested in using biosignals to control elements in a dynamic virtual environment.
Biofeedback has shown to be a promising tool for the treatment of anxiety; however, several theoretical as well as practical limitations have prevented widespread adaptation until now. With current technological advances and the increasing interest in the use of self-monitoring technology to improve mental health, we argue that this is an ideal time to launch a new wave of biofeedback training. In this viewpoint paper, we reflect on the current state of biofeedback training, including the more traditional techniques and mechanisms that have been thought to explain the effectiveness of biofeedback such as the integration of operant learning and meditation techniques, and the changes in interoceptive awareness and physiology. Subsequently, we propose an integrative model that includes a set of cognitive appraisals as potential determinants of adaptive trajectories within biofeedback training such as growth mindset, self-efficacy, locus of control, and threat-challenge appraisals. Finally, we present a set of detailed guidelines based on the integration of our model with the mechanics and mechanisms offered by emerging interactive technology to encourage a new phase of research and implementation using biofeedback. There is a great deal of promise for future biofeedback interventions that harness the power of wearables and video games, and that adopt a user-centered approach to help people regulate their anxiety in a way that feels engaging, personal, and meaningful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.