The non-destructive and label-free monitoring of extracellular matrix (ECM) remodeling and degradation processes is a great challenge. Raman spectroscopy is a non-contact method that offers the possibility to analyze ECM in situ without the need for tissue processing. Here, we employed Raman spectroscopy for the detection of heart valve ECM, focusing on collagen fibers. We screened the leaflets of porcine aortic valves either directly after dissection or after treatment with collagenase. By comparing the fingerprint region of the Raman spectra of control and treated tissues (400-1800 cm(-1)), we detected no significant differences based on Raman shifts; however, we found that increasing collagen degradation translated into decreasing Raman signal intensities. After these proof-of-principal experiments, we compared Raman spectra of native and cryopreserved valve tissues and revealed that the signal intensities of the frozen samples were significantly lower compared to those of native tissues, similar to the data seen in the enzymatically-degraded tissues. In conclusion, our data demonstrate that Raman microscopy is a promising, non-destructive and non-contact tool to probe ECM state in situ.
Noninvasive monitoring of tissue-engineered (TE) constructs during their in vitro maturation or postimplantation in vivo is highly relevant for graft evaluation. However, traditional methods for studying cell and matrix components in engineered tissues such as histology, immunohistochemistry, or biochemistry require invasive tissue processing, resulting in the need to sacrifice of TE constructs. Raman spectroscopy offers the unique possibility to analyze living cells label-free in situ and in vivo solely based on their phenotype-specific biochemical fingerprint. In this study, we aimed to determine the applicability of Raman spectroscopy for the noninvasive identification and spectral separation of primary human skin fibroblasts, keratinocytes, and melanocytes, as well as immortalized keratinocytes (HaCaT cells). Multivariate analysis of cell-type-specific Raman spectra enabled the discrimination between living primary and immortalized keratinocytes. We further noninvasively distinguished between fibroblasts, keratinocytes, and melanocytes. Our findings are especially relevant for the engineering of in vitro skin models and for the production of artificial skin, where both the biopsy and the transplant consist of several cell types. To realize a reproducible quality of TE skin, the determination of the purity of the cell populations as well as the detection of potential molecular changes are important. We conclude therefore that Raman spectroscopy is a suitable tool for the noninvasive in situ quality control of cells used in skin tissue engineering applications.
Proteoglycans (PGs) are crucial extracellular matrix (ECM) components that are present in all tissues and organs. Pathological remodeling of these macromolecules can lead to severe diseases such as osteoarthritis or rheumatoid arthritis. To date, PG-associated ECM alterations are routinely diagnosed by invasive analytical methods. Here, we employed Raman microspectroscopy, a laser-based, marker-free and non-destructive technique that allows the generation of spectra with peaks originating from molecular vibrations within a sample, to identify specific Raman bands that can be assigned to PGs within human and porcine cartilage samples and chondrocytes. Based on the non-invasively acquired Raman spectra, we further revealed that a prolonged in vitro culture leads to phenotypic alterations of chondrocytes, resulting in a decreased PG synthesis rate and loss of lipid contents. Our results are the first to demonstrate the applicability of Raman microspectroscopy as an analytical and potential diagnostic tool for non-invasive cell and tissue state monitoring of cartilage in biomedical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.