Herein we report the catalytic atroposelective syntheses of pharmaceutically relevant 3-arylquinolines via the nucleophilic aromatic substitution (SNAr) of thiophenols into 3-aryl-2-fluoroquinolines mediated by catalytic amounts of Cinchona alkaloid-derived ureas. These...
The catalytic enantioselective synthesis of 3-aryl-substituted pyrrolopyrimidines (PPYs), a common motif in drug discovery, is achieved through a kinetic resolution via quaternary ammonium salt-catalyzed nucleophilic aromatic substitution (SAr). Both enantioenriched products and starting materials can be functionalized with no observed racemization to give enantiodivergent access to diverse chiral analogues of an important class of kinase inhibitor. One of the compounds was found to be a potent and selective inhibitor of breast tumor kinase.
Atropisomerism is a type of chirality that is ubiquitous but often overlooked in modern drug discovery. In this Account we discuss studies on leveraging atropisomerism as a design principle in medicinal chemistry, and how this work led to several seemingly disparate projects that began due to synthetic challenges associated with accessing pharmaceutically relevant atropisomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.