Type IV secretion systems (T4SSs) are bacterial multiprotein organelles specialised in the transfer of (nucleo)protein complexes across cell membranes. They are essential for conjugation, bacterial-induced tumour formation in plant cells, as observed in Agrobacterium, toxin secretion, like in Bordetella and Helicobacter, cell-to-cell translocation of virulence factors, and intracellular activity of mammalian pathogens like Legionella. By enabling conjugative DNA delivery, these systems contribute to the spread of antibiotic resistance genes among bacteria. These translocons are made up by 10-15 proteins that are analogous to Vir proteins of Agrobacterium and traverse both membranes and the periplasmic space in between in Gram-negative bacteria. Their secretion substrates range from single-stranded DNA / protein complexes to multicomponent toxins and they are assisted by integral inner-membrane coupling factors, the multimeric type-IV coupling proteins (T4CPs), to connect the macromolecular complexes to be transferred with the secretory conduit. To do so, these T4CPs may be required to localise close to the secretion machinery within the donor cell. The T4CP structural prototype is the hexameric protein TrwB of Escherichia coli conjugative plasmid R388, closely related to Agrobacterium VirD4 protein. It is responsible for coupling the relaxosome with the DNA transport apparatus during cell mating. T4CP family members are related to SpoIIIE/FtsK proteins, essential for DNA pumping during sporulation and cell division. These features suggest possible mechanisms for conjugal T4CP function: as a simple coupler between two molecular machines, as a rotating device to pump DNA through the type-IV transport pore, or as a DNA injector, whereby its central channel would function as part of the transport pore.
Piscirickettsia salmonis is a fish bacterial pathogen that has severely challenged the sustainability of the Chilean salmon industry since its appearance in 1989. As this Gram-negative bacterium has been poorly characterized, relevant aspects of its life cycle, virulence and pathogenesis must be identified in order to properly design prophylactic procedures. This report provides evidence of the functional presence in P. salmonis of four genes homologous to those described for Dot/Icm Type IV Secretion Systems. The Dot/Icm System, the major virulence mechanism of phylogenetically related pathogens Legionella pneumophila and Coxiella burnetii, is responsible for their intracellular survival and multiplication, conditions that may also apply to P. salmonis. Our results demonstrate that the four P. salmonis dot/icm homologues (dotB, dotA, icmK and icmE) are expressed both during in vitro tissue culture cells infection and growing in cell-free media, suggestive of their putative constitutive expression. Additionally, as it happens in other referential bacterial systems, temporal acidification of cell-free media results in over expression of all four P. salmonis genes, a well-known strategy by which SSTIV-containing bacteria inhibit phagosome-lysosome fusion to survive. These findings are very important to understand the virulence mechanisms of P. salmonis in order to design new prophylactic alternatives to control the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.