The fundamentals for the topological classification of periodic orientationpreserving self-homeomorphisms of a closed orientable topological surface X of genus g ≥ 2 have been established, by Nielsen, in the thirties of the last century. Here we consider two concepts related to this classification; rigidity and weak rigidity. A cyclic action G of order N on X is said to be topologically rigid if any other cyclic action of order N on X is topologically conjugate to it. If this assertion holds for arbitrary other action but having, in addition, the same orbit genus and the same structure of singular orbits, then G is said to be weakly topologically rigid. We give a precise description of rigid and weakly rigid cyclic quasi-platonic actions which mean actions having three singular orbits and for which X/G is a sphere.
Explicit examples of both hyperelliptic and non-hyperelliptic curves which cannot be defined over their field of moduli are known in the literature. In this paper, we construct a tower of explicit examples of such kind of curves. In that tower there are both hyperelliptic curves and non-hyperelliptic curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.