A closed Riemann surface of genus g ≥ 2 is called a Hurwitz curve if its group of conformal automorphisms has order 84(g − 1). In 1895, A. Wiman noticed that there is no Hurwitz curve of genus g = 2, 4, 5, 6 and, up to isomorphisms, there is a unique Hurwitz curve of genus g = 3; this being Klein's plane quartic curve. Later, in 1965, A. Macbeath proved the existence, up to isomorphisms, of a unique Hurwitz curve of genus g = 7; this known as the Fricke-Macbeath curve. Equations were also provided; that being the fiber product of suitable three elliptic curves. In the same year, W. Edge constructed such a genus seven Hurwitz curve by elementary projective geometry. Such a construction was provided by first constructing a 4-dimensional family of genus seven closed Riemann surfaces S µ admitting a group Gµ ≅ Z 3 2 of conformal automorphisms so that S µ Gµ has genus zero. In this paper we discuss the above curves in terms of fiber products of classical Fermat curves and we provide a geometrical explanation of the three elliptic curves in Macbeath's description. We also observe that the jacobian variety of each S µ is isogenous to the product of seven elliptic curves (explicitly given) and, for the particular Fricke-Macbeath curve, we obtain the well known fact that its jacobian variety is isogenous to E 7 for a suitable elliptic curve E.