Summary
CD4+ CD25high regulatory T cells (Tregs) of patients with relapsing‐remitting (RR) multiple sclerosis (MS), in contrast to those of patients with secondary progressive (SP) MS, show a reduced suppressive function. In this study, we analysed forkhead box P3 (FOXP3) at the single‐cell level in MS patients and controls (healthy individuals and patients with other neurological diseases) by means of intracellular flow cytometry. Our data revealed a reduced number of peripheral blood CD4+ CD25high FOXP3+ T cells and lower FOXP3 protein expression per cell in RR‐MS patients than in SP‐MS patients and control individuals, which was correlated with the suppressive capacity of Tregs in these patients. Interestingly, interferon (IFN)‐β‐treated RR‐MS patients showed restored numbers of FOXP3+ Tregs. Furthermore, a higher percentage of CD4+ CD25high FOXP3+ Tregs in RR‐MS patients, as compared with controls and SP‐MS patients, expressed CD103 and CD49d, adhesion molecules involved in T‐cell recruitment towards inflamed tissues. This was consistent with a significantly increased number of CD27+ CD25high CD4+ T cells in the cerebrospinal fluid (CSF), as compared with peripheral blood, in RR‐MS patients. Taken together, these data show aberrant FOXP3 expression at the single‐cell level correlated with Treg dysfunction in RR‐MS patients. Our results also suggest that Tregs accumulate in the CSF of RR‐MS patients, in an attempt to down‐regulate local inflammation in the central nervous system.
BackgroundIn several autoimmune diseases, including multiple sclerosis (MS), a compromised regulatory T cell (Treg) function is believed to be critically involved in the disease process. In vitro, the biologically active metabolite of vitamin D has been shown to promote Treg development. A poor vitamin D status has been linked with MS incidence and MS disease activity. In the present study, we assess a potential in vivo correlation between vitamin D status and Treg function in relapsing remitting MS (RRMS) patients.Methodology/Principal FindingsSerum levels of 25-hydroxyvitamin D (25(OH)D) were measured in 29 RRMS patients. The number of circulating Tregs was assessed by flow-cytometry, and their functionality was tested in vitro in a CFSE-based proliferation suppression assay. Additionally, the intracellular cytokine profile of T helper cells was determined directly ex-vivo by flow-cytometry. Serum levels of 25(OH)D correlated positively with the ability of Tregs to suppress T cell proliferation (R = 0.590, P = 0.002). No correlation between 25(OH)D levels and the number of Tregs was found. The IFN-γ/IL-4 ratio (Th1/Th2-balance) was more directed towards IL-4 in patients with favourable 25(OH)D levels (R = −0.435, P = 0.023).Conclusions/SignificanceThese results show an association of high 25(OH)D levels with an improved Treg function, and with skewing of the Th1/Th2 balance towards Th2. These findings suggest that vitamin D is an important promoter of T cell regulation in vivo in MS patients. It is tempting to speculate that our results may not only hold for MS, but also for other autoimmune diseases. Future intervention studies will show whether modulation of vitamin D status results in modulation of the T cell response and subsequent amelioration of disease activity.
BackgroundA poor vitamin D status has been associated with a high disease activity of multiple sclerosis (MS). Recently, we described associations between vitamin D status and peripheral T cell characteristics in relapsing remitting MS (RRMS) patients. In the present study, we studied the effects of high dose vitamin D3 supplementation on safety and T cell related outcome measures.Methodology/Principal FindingsFifteen RRMS patients were supplemented with 20 000 IU/d vitamin D3 for 12 weeks. Vitamin D and calcium metabolism were carefully monitored, and T cell characteristics were studied by flowcytometry. All patients finished the protocol without side-effects, hypercalcaemia, or hypercalciuria. The median vitamin D status increased from 50 nmol/L (31–175) at week 0 to 380 nmol/L (151–535) at week 12 (P<0.001). During the study, 1 patient experienced an exacerbation of MS and was censored from the T cell analysis. The proportions of (naïve and memory) CD4+ Tregs remained unaffected. Although Treg suppressive function improved in several subjects, this effect was not significant in the total cohort (P = 0.143). An increased proportion of IL-10+ CD4+ T cells was found after supplementation (P = 0.021). Additionally, a decrease of the ratio between IFN-γ+ and IL-4+ CD4+ T cells was observed (P = 0.035).Conclusion/SignificanceTwelve week supplementation of high dose vitamin D3 in RRMS patients was well tolerated and did not induce decompensation of calcium metabolism. The skewing towards an anti-inflammatory cytokine profile supports the evidence on vitamin D as an immune-modulator, and may be used as outcome measure for upcoming randomized placebo-controlled trials.Trial RegistrationClinicaltrials.gov NCT00940719
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.