Tritium is produced naturally, mainly through interactions of cosmic rays with nitrogen in the atmosphere. Human activities (including thermonuclear bomb tests, operation of nuclear reactors, manufacture of nuclear weapons, and various industrial and medical applications) are also sources of tritium. Once in the environment, tritium occurs mainly in the form of tritiated water (HTO). International legislations and national regulations are in place to impose tight controls on releases as well as to ensure regular monitoring near anthropogenic sources. Tritium monitoring of surface and well waters that supply populations with drinking water are of particular importance. The monitoring data are used to trace releases and also for the evaluation of tritium doses to nearby residents. According to the European Commission, the upper limit for tritium in water is 100Bql -1 [1]. This value was not set based on the probability of health effects. It is a monitoring tool (action level) because tritium activity concentration exceeding 100 Bql -1 could indicate a leakage or a release for which further analysis, to check if other radionuclides are present in water, would be warranted. In this paper, tritium concentrations measured in water samples collected from the Mlaka creek in the vicinity of the "Nuclear Facilities of Serbia" are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.