Background The Clinical Frailty Scale (CFS) is frequently used to measure frailty in critically ill adults. There is wide variation in the approach to analysing the relationship between the CFS score and mortality after admission to the ICU. This study aimed to evaluate the influence of modelling approach on the association between the CFS score and short-term mortality and quantify the prognostic value of frailty in this context. Methods We analysed data from two multicentre prospective cohort studies which enrolled intensive care unit patients ≥ 80 years old in 26 countries. The primary outcome was mortality within 30-days from admission to the ICU. Logistic regression models for both ICU and 30-day mortality included the CFS score as either a categorical, continuous or dichotomous variable and were adjusted for patient’s age, sex, reason for admission to the ICU, and admission Sequential Organ Failure Assessment score. Results The median age in the sample of 7487 consecutive patients was 84 years (IQR 81–87). The highest fraction of new prognostic information from frailty in the context of 30-day mortality was observed when the CFS score was treated as either a categorical variable using all original levels of frailty or a nonlinear continuous variable and was equal to 9% using these modelling approaches (p < 0.001). The relationship between the CFS score and mortality was nonlinear (p < 0.01). Conclusion Knowledge about a patient’s frailty status adds a substantial amount of new prognostic information at the moment of admission to the ICU. Arbitrary simplification of the CFS score into fewer groups than originally intended leads to a loss of information and should be avoided. Trial registration NCT03134807 (VIP1), NCT03370692 (VIP2)
Background Sepsis is one of the most frequent reasons for acute intensive care unit (ICU) admission of very old patients and mortality rates are high. However, the impact of pre-existing physical and cognitive function on long-term outcome of ICU patients ≥ 80 years old (very old intensive care patients (VIPs)) with sepsis is unclear. Objective To investigate both the short- and long-term mortality of VIPs admitted with sepsis and assess the relation of mortality with pre-existing physical and cognitive function. Design Prospective cohort study. Setting 241 ICUs from 22 European countries in a six-month period between May 2018 and May 2019. Subjects Acutely admitted ICU patients aged ≥80 years with sequential organ failure assessment (SOFA) score ≥ 2. Methods Sepsis was defined according to the sepsis 3.0 criteria. Patients with sepsis as an admission diagnosis were compared with other acutely admitted patients. In addition to patients’ characteristics, disease severity, information about comorbidity and polypharmacy and pre-existing physical and cognitive function were collected. Results Out of 3,596 acutely admitted VIPs with SOFA score ≥ 2, a group of 532 patients with sepsis were compared to other admissions. Predictors for 6-month mortality were age (per 5 years): Hazard ratio (HR, 1.16 (95% confidence interval (CI), 1.09–1.25, P < 0.0001), SOFA (per one-point): HR, 1.16 (95% CI, 1.14–1.17, P < 0.0001) and frailty (CFS > 4): HR, 1.34 (95% CI, 1.18–1.51, P < 0.0001). Conclusions There is substantial long-term mortality in VIPs admitted with sepsis. Frailty, age and disease severity were identified as predictors of long-term mortality in VIPs admitted with sepsis.
Although the number of cases and mortality of COVID-19 are seemingly declining, clinicians endeavor to establish indicators and predictors of such responses in order to optimize treatment regimens for future outbreaks of SARS-CoV-2 or similar viruses. Considering the importance of aberrant immune response in severe COVID-19, in the present study, we aimed to explore the dynamic of serum TNF-like weak inducer of apoptosis (TWEAK) levels in critically-ill COVID-19 patients and establish whether these levels may predict in-hospital mortality and if TWEAK is associated with impairment of testosterone levels observed in this population. The present single-center cohort study involved 66 men between the ages of 18 and 65 who were suffering from a severe type of COVID-19. Serum TWEAK was rising during the first week after admission to intensive care unit (ICU), whereas decline to baseline values was observed in the second week post-ICU admission (p = 0.032) but not in patients who died in hospital. Receiver-operator characteristics analysis demonstrated that serum TWEAK at admission to ICU is a significant predictor of in-hospital mortality (AUC = 0.689, p = 0.019). Finally, a negative correlation was found between serum TWEAK at admission and testosterone levels (r = −0.310, p = 0.036). In summary, serum TWEAK predicts in-hospital mortality in severe COVID-19. In addition, inflammatory pathways including TWEAK seem to be implicated in pathophysiology of reproductive hormone axis disturbance in severe form of COVID-19.
Accumulating data suggest that various neurologic manifestations are reported in critically-ill COVID-19 patients. Although low testosterone levels were associated with poor outcomes, the relationship between testosterone levels and indices of brain injury are still poorly understood. Therefore, we aimed to explore whether testosterone levels are associated with glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), biomarkers of brain injury, in patients with a severe form of COVID-19. The present study was conducted on 65 male patients aged 18–65 with severe COVID-19. Blood samples were collected at three time points: upon admission to ICU, 7 days after, and 14 days after. In patients with neurological sequels (n = 20), UCH-L1 serum concentrations at admission were markedly higher than in patients without them (240.0 (155.4–366.4) vs. 146.4 (92.5–243.9) pg/mL, p = 0.022). GFAP concentrations on admission did not differ between the groups (32.2 (24.2–40.1) vs. 29.8 (21.8–39.4) pg/mL, p = 0.372). Unlike GFAP, UCH-L1 serum concentrations exhibited a negative correlation with serum testosterone in all three time points (r = −0.452, p < 0.001; r = −0.430, p < 0.001 and r = −0.476, p = 0.001, respectively). The present study suggests that the traumatic brain injury biomarker UCH-L1 may be associated with neurological impairments seen in severe COVID-19. Moreover, a negative correlation between UCH-L1 and serum testosterone concentrations implies that testosterone may have a role in the development of neurological sequels in critically-ill COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.