DNA released from cells into the peripheral blood is known as cell-free DNA (cfDNA), representing a promising noninvasive source of biomarkers that could be utilized to manage Diffuse Large B-Cell Lymphoma (DLBCL), among other diseases. The procedure for purification and handling of cfDNA is not yet standardized, and various preanalytical variables may affect the yield and analysis of cfDNA, including the purification kits, blood collection tubes, and centrifugation regime. Therefore, we aimed to investigate the impact of these preanalytical variables on the yield of cfDNA by comparing three different purification kits DNeasy Blood & Tissue Kit (Qiagen), QIAamp Circulating Nucleic Acid Kit (Qiagen), and Quick-cfDNA Serum & Plasma Kit (Zymo Research). Two blood collection tubes (BCTs), EDTA-K2 and Cell-Free DNA (Streck), stored at four different time points before plasma was separated and cfDNA purified, were compared, and for EDTA tubes, two centrifugation regimes at
2000
×
g
and
3000
×
g
were tested. Additionally, we have tested the utility of long-term archival blood samples from DLBCL patients to detect circulating tumor DNA (ctDNA). We observed a higher cfDNA yield using the QIAamp Circulating Nucleic Acid Kit (Qiagen) purification kit, as well as a higher cfDNA yield when blood samples were collected in EDTA BCTs, with a centrifuge regime at
2000
×
g
. Moreover, ctDNA detection was feasible from archival plasma samples with a median storage time of nine years.
Background
Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoid neoplasm among adults,and approximately 30–40% of patients will experience relapse while 5–10% will suffer from primary refractory disease caused by different mechanisms, including treatment-induced resistance. For refractory and relapsed DLBCL (rrDLBCL) patients, early detection and understanding of the mechanisms controlling treatment resistance are of great importance to guide therapy decisions. Here, we have focused on genetic variations in immune surveillance genes in diagnostic DLBCL (dDLBCL) and rrDLBCL patients to elaborate on the suitability of new promising immunotherapies.
Methods
Biopsies from 30 dDLBCL patients who did not progress or relapse during follow up and 17 rrDLBCL patients with refractory disease or who relapsed during follow up were analyzed by whole-exome sequencing, including matched individual germline samples to include only somatic genetic variants in downstream analysis of a curated list of 58 genes involved in major immune surveillance pathways.
Results
More than 70% of both dDLBCLs and rrDLBCLs harbored alterations in immune surveillance genes, but rrDLBCL tumor samples have a lower number of genes affected compared to dDLBCL tumor samples. Increased gene mutation frequencies in rrDLBCLs were observed in more than half of the affected immune surveillance genes than dDLBCLs.
Conclusion
Genetic variants in the antigen-presenting genes affect a higher number of rrDLBCL patients supporting an important role for these genes in tumor progression and development of refractory disease and relapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.