In vivo functionality of cardiovascular tissue engineered constructs requires in vitro control of tissue development to obtain a well developed extracellular matrix (ECM). We hypothesize that ECM formation and maturation is stimulated by culturing at low oxygen concentrations. Gene expression levels of monolayers of human vascular-derived myofibroblasts, exposed to 7, 4, 2, 1, and 0.5% O(2) (n = 9 per group) for 24 h, were measured for vascular endothelial growth factor (VEGF), procollagen α1(I) and α1(III), elastin, and cross-link enzymes lysyl oxidase (LOX) and lysyl hydroxylase 2 (LH2). After 4 days of exposure to 7, 2, and 0.5% O(2) (n = 3 per group), protein synthesis was evaluated. All analyses were compared with control cultures at 21% O(2). Human myofibroblasts turned to hypoxia-driven gene expression, indicated by VEGF expression, at oxygen concentrations of 4% and lower. Gene expression levels of procollagen α1(I) and α1(III) increased to 138 ± 26 and 143 ± 19%, respectively, for all oxygen concentrations below 4%. At 2% O(2), LH2 and LOX gene expression levels were higher than control cultures (340 ± 53 and 136 ± 29%, respectively), and these levels increased even further with decreasing oxygen concentrations (611 ± 176 and 228 ± 45%, respectively, at 0.5% O(2)). Elastin gene expression levels remained unaffected. Collagen synthesis and LH2 protein levels increased at oxygen concentrations of 2% and lower. Oxygen concentrations below 4% induce enhanced ECM production by human myofibroblasts. Implementation of these results in cardiovascular tissue engineering approaches enables in vitro control of tissue development.
Background-Previous attempts in heart valve tissue engineering (TE) failed to produce autologous valve replacements with native-like mechanical behavior to allow for systemic pressure applications. Because hypoxia and insulin are known to promote protein synthesis by adaptive cellular responses, a physiologically relevant oxygen tension and insulin supplements were applied to the growing heart valve tissues to enhance their mechanical properties. Methods and Results-Scaffolds of rapid-degrading polyglycolic acid meshes coated with poly-4-hydroxybutyrate were seeded with human saphenous vein myofibroblasts. The tissue-engineered constructs were cultured under normal oxygen tension (normoxia) or hypoxia (7% O 2 ) and incubated with or without insulin. Glycosaminoglycan production in the constructs approached that of native values under the influence of hypoxia and under the influence of insulin. Both insulin and hypoxia were associated with enhanced matrix production and improved mechanical properties; however, a synergistic effect was not observed. Although the amount of collagen and cross-links in the engineered tissues was still lower than that in native adult human aortic valves, constructs cultured under hypoxic conditions reached native human aortic valve levels of tissue strength and stiffness after 4 weeks of culturing. Conclusions-These results indicate that oxygen tension may be a key parameter for the achievement of sufficient tissue quality and mechanical integrity in tissue-engineered heart valves. Engineered tissues of such strength, based on rapid-degrading polymers, have not been achieved to date. These findings bring the potential use of tissue-engineered heart valves for systemic applications a step closer and represent an important improvement in heart valve tissue engineering. (Circulation. 2009;119:290-297.)
Cardiovascular tissue engineering has shown considerable progress, but in vitro tissue conditioning to stimulate the development of a functional extracellular matrix still needs improvement. We investigated the environmental factor oxygen concentration for its potential to increase the amount of collagen and collagen cross-links, and therefore improve tissue quality. Cardiovascular tissue engineered (TE) constructs, made of rapidly degrading PGA/P4HB scaffold seeded with human vascular-derived cells, were cultured at 7%, 4%, 2%, 0.5% O(2) for 4 weeks and compared to control cultures at 21% O(2). Tissue properties were evaluated by measuring the extracellular matrix production and mechanical behavior. The culture environment was monitored closely and the oxygen gradient throughout the constructs was simulated with a theoretical model. TE constructs cultured at 21%, 7% and 4% O(2) showed dense and homogeneous tissue formation with comparable strength, stiffness, collagen and collagen cross-link content. At 2% O(2), collagen content and stiffness decreased, whereas at 0.5% O(2), hardly any tissue was formed. Overall, tissue properties deteriorated at the lowest oxygen concentrations, opposing our hypothesis that was based on previous culture at low oxygen concentrations. Further research will focus on establishing the balance between applied oxygen conditions (concentration and exposure time) and optimal tissue outcome.
Heart valve tissue engineering (TE) relies on extracellular matrix production by cells seeded into a degrading scaffold material. Valves are cultured constraint with the leaflets attached to each other for 4 weeks [1]. The seeded cells naturally exert traction forces to their surroundings and due to an imbalance between scaffold, tissue and these traction forces, stress is generated within the tissue, which is good for tissue formation and architecture. However, during culture it causes tissue compaction, resulting in leaflet flattening, and at time of implantation, the leaflets are separated and the generated stress causes retraction of the leaflets (fig 1). This retraction on its turn results in loss of functionality.
Objectives: Photoepilation is a commonly used technology in home-use devices (HUDs) and in professional systems to remove unwanted body hair using pulses of laser or intense pulsed light (IPL). Albeit HUDs and professional systems operate at different fluences and treatment regimes, both demonstrate high hair reduction. The underlying mechanisms, however, remain unknown partly due to high divergence of the existing literature data. The objective of this study was to develop an ex vivo photoepilation model with a set of criteria evaluating response to light pulses; and to investigate dose-response behavior of hair follicles (HFs) subjected to a range of fluences. Methods: After ex vivo treatment (single pulse, 810 nm, 1.7-26.4 J/cm 2 , 4-64 ms pulse) human anagen HFs were isolated and maintained in culture for 7-10 days. Response to light was evaluated based on gross-morphology and histological examination (H&E and TUNEL stainings). Results: HFs treated ex vivo demonstrated a dosedependent response to light with five distinct classes defined by macroscopic and microscopic criteria. Fluences below 13.2 J/cm 2 provoked catagen-like transition, higher fluences resulted in coagulation in HF compartments. Conclusion: Observed changes in the HF organ culture model were reflected by clinical efficacy. The developed photoepilation model provides an easy and fast method to predict clinical efficacy and permanency of light-based hair removal devices. Lasers Surg. Med.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.