Viral infections are an important cause of death worldwide. Unfortunately, there is still a lack of antiviral drugs or vaccines for a large number of viruses, and this represents a remarkable challenge particularly for emerging and re-emerging viruses. For this reason, the identification of broad spectrum antiviral compounds provides a valuable opportunity for developing efficient antiviral therapies. Here we report on a class of rhodanine and thiobarbituric derivatives displaying a broad spectrum antiviral activity against seven different enveloped viruses including an HSV-2 acyclovir resistant strain with favorable selectivity indexes. Due to their selective action on enveloped viruses and to their lipid oxidation ability, we hypothesize a mechanism on the viral envelope that affects the fluidity of the lipid bilayer, thus compromising the efficiency of virus-cell fusion and preventing viral entry.
eWe report here the synthesis of 2-aminothiazolones along with their biological properties as novel anti-HIV agents. Such compounds have proven to act through the inhibition of the gp120-CD4 protein-protein interaction that occurs at the very early stage of the HIV-1 entry process. No cytotoxicity was found for these compounds, and broad antiviral activities against laboratory strains and pseudotyped viruses were documented. Docking simulations have also been applied to predict the mechanism, at the molecular level, by which the inhibitors were able to interact within the Phe43 cavity of HIV-1 gp120. Furthermore, a preliminary absorption, distribution, metabolism, and excretion (ADME) evaluation was performed. Overall, this study led the basis for the development of more potent HIV entry inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.