High morphological abnormality and mortality rates have been reported in the pale grass blue butterfly, Zizeeria maha , since the Fukushima nuclear accident. However, it remains uncertain if these effects are restricted to this butterfly. Here, we evaluated the effects of ingesting cabbage leaves grown with contaminated soils from Fukushima on the development and hemocytes of the cabbage white butterfly, Pieris rapae . Contaminated cabbage leaves containing various low levels of anthropogenic 134 Cs and 137 Cs radioactivity (less than natural 40 K radioactivity) were fed to larvae from Okinawa, the least contaminated locality in Japan. Negative developmental and morphological effects were detected in the experimental groups. The cesium (but not potassium) radioactivity concentration was negatively correlated with the granulocyte percentage in hemolymph, and the granulocyte percentage was positively correlated with the pupal eclosion rate, the adult achievement rate, and the total normality rate. These results demonstrated that ingesting low-level radiocesium contaminants in Fukushima (but not natural radiopotassium) imposed biologically negative effects on the cabbage white butterfly, as in the pale grass blue butterfly, at both cellular and organismal levels.
The pale grass blue butterfly Zizeeria maha is sensitive to low-dose radioactive pollution from the Fukushima nuclear accident in the field but is also highly tolerant to radioactive cesium (137Cs) in an artificial diet in laboratory experiments. To resolve this field-laboratory paradox, we hypothesize that the butterfly shows vulnerability in the field through biochemical changes in the larval host plant, the creeping wood sorrel Oxalis corniculata, in response to radiation stress. To test this field-effect hypothesis, we examined nutrient contents in the host plant leaves from Tohoku (mostly polluted areas including Fukushima), Niigata, and Kyushu, Japan. Leaves from Tohoku showed significantly lower sodium and lipid contents than those from Niigata. In the Tohoku samples, the sodium content (but not the lipid content) was significantly negatively correlated with the radioactivity concentration of cesium (137Cs) in leaves and with the ground radiation dose. The sodium content was also correlated with other nutrient factors. These results suggest that the sodium imbalance of the plant may be caused by radiation stress and that this nutrient imbalance may be one of the reasons that this monophagous butterfly showed high mortality and morphological abnormalities in the field shortly after the accident in Fukushima.
The Fukushima nuclear accident in March 2011 caused the massive release of anthropogenic radioactive materials from the Fukushima Dai-ichi Nuclear Power Plant to its surrounding environment. Its biological effects have been studied using the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae), but the overwintering states of this butterfly remain elusive. Here, we conducted a series of field surveys in March 2018, March 2019, and April 2019 in Fukushima and its vicinity to clarify the overwintering states of this butterfly at the time of the Fukushima nuclear accident. We discovered overwintering individuals in situ associated with the host plant Oxalis corniculata under natural straw mulch as first-instar to fourth-instar larvae in March 2018 and 2019. No other developmental stages were found. The body length and width were reasonably correlated with the accumulated temperature. On the basis of a linear regression equation between body size and accumulated temperature, together with other data, we deduced that the pale grass blue butterfly occurred as fourth-instar larvae in Fukushima and its vicinity at the time of the accident. This study paves the way for subsequent dosimetric analyses that determine the radiation doses absorbed by the butterfly after the accident.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.