BackgroundSilver nanoparticles (AgNPs) are an important class of nanomaterials used as antimicrobial agents for a wide range of medical and industrial applications. However toxicity of AgNPs and impact of their physicochemical characteristics in in vivo models still need to be comprehensively characterized. The aim of this study was to investigate the effect of size and coating on tissue distribution and toxicity of AgNPs after intravenous administration in mice, and compare the results with those obtained after silver acetate administration.MethodsMale CD-1(ICR) mice were intravenously injected with AgNPs of different sizes (10 nm, 40 nm, 100 nm), citrate-or polyvinylpyrrolidone-coated, at a single dose of 10 mg/kg bw. An equivalent dose of silver ions was administered as silver acetate. Mice were euthanized 24 h after the treatment, and silver quantification by ICP-MS and histopathology were performed on spleen, liver, lungs, kidneys, brain, and blood.ResultsFor all particle sizes, regardless of their coating, the highest silver concentrations were found in the spleen and liver, followed by lung, kidney, and brain. Silver concentrations were significantly higher in the spleen, lung, kidney, brain, and blood of mice treated with 10 nm AgNPs than those treated with larger particles. Relevant toxic effects (midzonal hepatocellular necrosis, gall bladder hemorrhage) were found in mice treated with 10 nm AgNPs, while in mice treated with 40 nm and 100 nm AgNPs lesions were milder or negligible, respectively. In mice treated with silver acetate, silver concentrations were significantly lower in the spleen and lung, and higher in the kidney than in mice treated with 10 nm AgNPs, and a different target organ of toxicity was identified (kidney).ConclusionsAdministration of the smallest (10 nm) nanoparticles resulted in enhanced silver tissue distribution and overt hepatobiliary toxicity compared to larger ones (40 and 100 nm), while coating had no relevant impact. Distinct patterns of tissue distribution and toxicity were observed after silver acetate administration. It is concluded that if AgNPs become systemically available, they behave differently from ionic silver, exerting distinct and size-dependent effects, strictly related to the nanoparticulate form.Electronic supplementary materialThe online version of this article (doi:10.1186/s12989-016-0124-x) contains supplementary material, which is available to authorized users.
The study explored possible reproductive and endocrine effects of short-term (5 days) oral exposure to anatase TiO2 nanoparticles (0, 1, 2 mg/kg body weight per day) in rat. Nanoparticles were characterised by scanning electron microscopy (SEM) and transmission electron microscopy, and their presence in spleen, a target organ for bioaccumulation, was investigated by single-particle inductively coupled plasma mass spectrometry and SEM/energy-dispersive X-ray. Analyses included serum hormone levels (testosterone, 17-β-estradiol and triiodothyronine) and histopathology of thyroid, adrenals, ovary, uterus, testis and spleen. Increased total Ti tissue levels were found in spleen and ovaries. Sex-related histological alterations were observed at both dose levels in thyroid, adrenal medulla, adrenal cortex (females) and ovarian granulosa, without general toxicity. Altered thyroid function was indicated by reduced T3 (males). Testosterone levels increased in high-dose males and decreased in females. In the spleen of treated animals TiO2 aggregates and increased white pulp (high-dose females) were detected, even though Ti tissue levels remained low reflecting the low doses and the short exposure time. Our findings prompt to comprehensively assess endocrine and reproductive effects in the safety evaluation of nanomaterials.
Wheat (Triticum aestivum) collected in the Nawanshahr-Hoshiarpur Region (Punjab, India) showed the highest selenium concentrations ever recorded in cereal grains (29-185 microg g(-1)). There was a strong positive relationship between the selenium content in shoots and that in kernels, showing that grain selenium concentration can be predicted from that in the vegetative tissues of the plant. The identity and content of the selenocompounds in the grain samples and in wheat-based reference materials were investigated by HPLC-ICP-dynamic reaction cell-MS. Reversed-phase, cation exchange, and anion exchange HPLC were used to separate the selenium species after ultrasound-assisted enzymatic extraction with an ultrasonic probe. Selenomethionine and selenate accounted for 72-85% and 2-6% of the sum of the selenium species, respectively. The proportion of organic Se species varied with increasing Se content; namely, SeMet showed a relative reduction whereas the other organoselenium compounds increased up to 18-22% of the total chromatographed selenium. Se-methyl-selenocysteine was detected as a minor compound (0.2-0.5%) in high-Se wheat by both reversed-phase and cation exchange HPLC using retention time matching with the standard substance spiked to the sample extracts. Regular consumption of locally produced wheat-based food items may lead the population of the study area to an excessive intake of selenium. On the other hand, the large predominance of selenomethionine shows that local wheat can be a promising raw material for naturally enriched products to be used to supplement human and animal diets in low selenium areas.
Seven hundred and twenty-six samples of wheat grains from the majority of Italian agricultural areas were pooled into 141 composite samples, homogeneous with respect to geographical origin and wheat variety. The average arsenic concentration of the pooled samples was 9 ng g(-1), with a range of 2-55 ng g(-1) (dry weight basis). The spread of arsenic concentrations (coefficient of variation of 91%) was related to spatial variability associated with geochemical and environmental factors. Temporal variability was investigated by a 3-year longitudinal study on 7 wheat cultivars grown in 22 areas of central and northern Italy. Average year-to-year variation in arsenic levels was low, and the average of the coefficients of variation was 23%. These results show that mapping of phytoavailable arsenic in agricultural soils can be done by measuring arsenic concentration in representative samples of wheat grains. Arsenic speciation in the grain showed that As(III) and As(V) were the major As compounds, highlighting the importance of wheat as a source of inorganic arsenic in the diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.